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Most current software systems cannot adapt to changing hardware requirements or changing operational 
environments. This lack of adaptivity shortens the life of the software and makes it less capable of achieving 
its mission. We are developing Probabilistic Representation of Intent Commitments to Ensure Software 
Survival (PRINCESS) to enable software to adapt to both hardware changes and changing environments. We 
are developing methods to automatically optimize software for new environments, turning non-adaptive 
code into optimizable adaptive code. We are also developing sensor adapters that enable us to maintain 
software function despite changing or failing sensors. We are implementing PRINCESS on the navigation 
system of an unmanned undersea vehicle. An independent evaluation has demonstrated PRINCESS's ability to 
adapt to degraded sensors, changing environmental conditions, and loss of power.  
 

Introduction 
 
Unmanned undersea vehicles (UUVs) are designed for challenging missions in changing 
environments. To maximize their effectiveness, these vehicles should adapt to system failures 
(such as loss of a battery) and changes to the environment (such as a force on the UUV). Since 
the development of UUVs is expensive, it is also desirable to increase their lifespan by making 
their software adapt to ecosystem changes like upgraded sensors. 
 
In our Probabilistic Representation of Intent Commitments to Ensure Software Survival 
(PRINCESS) project, part of DARPA’s BRASS program, we are developing methods to adapt the 
UUV’s software for all these purposes. Our sensor adaptation accommodates new and upgraded 
sensors as well as compensates for sensor degradation while the UUV is on a mission. Our control 
adaptation responds to online system failures and environmental changes in real time; we use 
probabilistic verification techniques to ensure that these adaptations do not result in software 
behavior that is dangerous for the UUV.   
 
In our recent work on PRINCESS, we have worked on two scenarios involving a REMUS 600 UUV. 
The first scenario involves degradation of a Doppler velocity log (DVL) sensor used for navigation 
and a simultaneous perturbation to the environment in the form of a high current. Our 
adaptation reconstructs an estimate of the sensor signal from other sensors and adjusts the 



parameters of the navigation system’s Kalman filter to account for the increased noise and 
environment perturbation. In the second scenario, the UUV undergoes a catastrophic loss of 
battery power while on a reconnaissance mission for an object on the ocean floor. Our adaptation 
reconfigures the UUV’s path planner to generate a path that searches as much of the region as 
possible while still bringing the UUV home safely without running out of power.  
 

Adaptation Methods 
 
Sensor Adaptation  
 
The ability to detect and adapt to sensor failures has a number of benefits. Particularly, in the 
UUV domain, it significantly reduces the time and effort required for software maintenance when 
a sensor fails or is replaced. Instead of changing the software itself, our approach invokes a Joint 
Detection and Adaptation (JDA) module.  
 
Our sensor adaptation assumes that sensor values among a subset of sensors are correlated, 
which is often true in real-world systems [1]. While JDA uses several techniques from Machine 
Learning (ML), its real power stems from a novel constraint-based framework in which these ML 
techniques are embedded. We note that a naive application of ML techniques to reconstruct one 
sensor value from other sensor values is unviable since multiple sensors can fail at the same time. 
Instead, in JDA, we first learn a substrate set of constraints. These constraints have the general 
form (𝑦# − 𝑓#(𝑧#))( ≤ 𝜀#(, where 𝑦# is the target sensor value at time 𝑡; 𝑧# is a set of input sensor 
values at time ≤ 𝑡, and 𝑓#() is a reconstruction function.  
 
The reconstruction functions ideally allow for the accurate reconstruction of failed sensor values, 
are comprehensive enough to be able to adapt too many kinds of failures, and are easy to 
understand in general. In JDA, we learn them using a blend of ML methods and other heuristic 
methods that first identify the variables of interest. For example, casting a LASSO problem [2] 
instance can help us first identify a sparse set of variables that determine the value of a target 
sensor up to a certain level of accuracy. After these variables are determined, ML techniques can 
be used to learn the actual reconstruction function [3]. Similar LASSO problem instances can 
subsequently be used to identify a second, third, or generally, the 𝑘-. set of relevant variables 
that minimizes overlap with the previous sets of variables.  
 
Such a substrate of constraints can be viably used for detecting and adapting to multiple sensor 
failures. First, a violated constraint indicates a sensor failure and, in particular, indicates that at 
least one of the sensors involved in that constraint has failed. A minimum set of such failed 
sensors that account for all violated constraints is identified by solving an Integer Linear Program 
[4]. After sensors are deemed to have failed or to be in a working condition, reconstruction of 
failed sensor values, i.e., adaptation is invoked. To reconstruct the value of a failed sensor, we 
simply find a constraint with minimum 𝜀# in which 𝑦# is the target sensor value and all sensors in 



𝑧# are deemed to be in a working condition. As a natural consequence of our constraint-based 
method, 𝜀# can also be used as an estimate of how good our adaptation is. 
 
Control Adaptation and Verification 
 
The goal of control adaptation is to adapt the UUVs software in real time in response to 
perturbations (like loss of battery power) and environmental changes (like change of current). In 
PRINCESS, we work with legacy software components that do not have any controllable 
parameters with understood semantics, such as the UUV’s Kalman filter and path planner 
components. Therefore, we must make those components adaptive by increasing their range of 
behavior and synthesizing control parameters. We must also learn the meaning of those control 
parameters; in other words, we must understand how different settings of the controls enable 
the component to achieve its intent in different situations. 
 
Our method uses a combination of program transformation and machine learning. First, we 
introduce variable behavior into the software component. Beginning with a component with a 
given set of inputs and fixed behaviors, we first analyze the code to identify candidates for 
variation, such as constants or inequalities. We then parameterize these candidates, for example 
by replacing a constant with a control variable, or adding a control variable to one side of a loop 
inequality. We then transform the interface of the component to take the control parameters as 
input to produce a transformed component ready for adaptation. 
 
The next step is to learn how to set the values of the controls in each situation. To achieve this, 
we generate, via a simulator, a large dataset of inputs, environment variables, and controls, and 
run the software component and evaluate the intent of the component. PRINCESS uses this 
dataset to train a feed forward neural network, which then identifies the optimal value of the 
controls for each setting of the inputs and environment variables. This creates a supervised 
learning problem, where we learn a mapping from the state of the inputs and environment 
variables to the optimal controls. 
 
The final step is to combine the learned optimization policy with the transformed component to 
produce an optimizing component. Given values of the inputs and environment variables, the 
optimization policy produces values for the controls that are fed into the transformed 
component. This optimizing component functions in a transformed software system alongside a 
monitor that keeps track of the state of environment variables and passes them to the optimizing 
component. Further details on the program transformation and optimization can be found in [5]. 
 
Optimizing component controls using machine learning techniques could produce dangerous 
adaptations and may be difficult to trust. To provide assurances about the safety and reliability 
of our control adaptations, we employ formal verification techniques. In particular, we use 
probabilistic model checking, which is a technique for producing guarantees about quantitative 
aspects of a system’s runtime behavior, such as execution time, energy usage or the probability 
of failure. This approach is based on the systematic construction and numerical analysis of a 



stochastic model, which yields a probabilistic guarantee on a system property formally specified 
in temporal logic. 
 
In this work, we deploy verification at runtime, automatically building and solving models 
representing the execution of the current mission plan. Currently, this focuses on the path 
planning component of the UUV. Each time that an adaptation occurs, generating a new path 
plan for the UUV’s mission, we apply verification to check if the adaptation can be applied safely. 
If the verifier deems an adaptation to be unsafe, PRINCESS tightens the constraints on the 
adaptation requirements (i.e., reduces allowed power usage) and generates a new adaptation 
candidate. This process repeats for a fixed number of times until the optimizer finds an 
adaptation with a probabilistic guarantee of success or until the feedback loop reaches the 
repetition threshold. In the latter case, PRINCESS will either proceed with the most recent 
adaptation candidate or return home, depending on policy. 
 
The primary risk of a mission failing in this context is the possibility of the vehicle becoming 
stranded due to the battery depleting and it being unable to return home. So, a key aspect of the 
model used for verification is the energy consumption of the UUV. Due to environmental 
uncertainty, this aspect of its behavior needs to be modelled stochastically, and this is the main 
reason that we produce a probabilistic guarantee of mission success (the likelihood of completing 
the current search process and then safely returning home). The model we construct is a discrete-
time Markov chain, whose state incorporates both the current position of the UUV in its mission, 
and the battery level. 
 
We use an adapted version of the PRISM probabilistic verification software [6], in particular 
connecting to its Java API, which allows models to be constructed on the fly using a generative 
model interface. We build upon earlier PRISM-based methods for producing verified navigation 
plans for mobile robots [7]. The portion of the model that captures how energy usage varies with 
the UUV’s location and speed is learnt offline, using traces generated from simulated behavior of 
the UUV. The result is a parameterized model that can be reconstructed at runtime, depending 
on the current status of the UUV at a given point in the mission. 

Results  
 
Our adaptation approaches were independently evaluated by MIT Lincoln Laboratory as part of 
the DARPA BRASS Program. The sensor adaptation approach was evaluated under scenarios in 
which the UUV must navigate from a starting position to a specified destination. Results are 
shown in Figure 1. During transit, the UUV encounters a region of water current and experiences 
a sensor failure. For each scenario, the evaluators recorded a Pass verdict if the adapted UUV 
ended within 75m from the destination. Only scenarios in which the non-adapted system failed 
to reach this threshold were considered. 



 
Figure 1: Results of MIT Lincoln Laboratory evaluation of sensor adaptation approach 

 
The control adaptation and verification approach was evaluated under scenarios in which the 
UUV must search a rectangular region of the sea floor to find an object. We simulate battery 
failures in each scenario. The UUV must find the object and return to its starting point, and it 
must adapt its search path when energy perturbations occur. Figure 2 shows the results of the 
same scenarios run in Baseline (no failures), Perturbed (no adaptation with battery failures), 
and Adapted (with battery failures and adaptation) stages. The verdicts are defined as follows: 

• Pass – object found and UUV returns 
• Degraded – object not found and UUV returns 
• Fail – the UUV depletes its energy before it can return 

 

 

Figure 2: Results of MIT Lincoln Laboratory evaluation of control adaptation and verification approach  

Conclusion 
 



A UUV provides an ideal platform to study many aspects of software adaptation. In PRINCESS, we 
have successfully demonstrated adaptation to upgraded and degraded sensors, system failures, 
environment changes, and new architecture. In our ongoing work, we aim to generalize our 
methods beyond UUVs to other software systems. Our control adaptation, for example, uses 
general techniques of program transformation and machine learning that could, in principle, be 
applied to a wide variety of systems in different programming languages. We also aim to smooth 
out and automate as much as possible the process by which a legacy code base is transformed 
into an adaptive code base. These developments have the potential to not only increase the life 
of software but make the software behave more appropriately in its new environment than the 
original software. 

Lessons Learned 
 
During our experimentation with intents for the Navigation system, we discovered that the intent 
of the Kalman Filter does not map directly to the operational intent of the UUV’s navigation 
system. In contrast, the Path Planner intent to maximize area coverage while restricting energy 
consumption is analogous with maximizing its probability of finding a randomly placed object 
within the area, thus yielding much better results, even though the optimization approach was 
the same. This underscores the notion that proper intent specification ultimately drives the 
optimization of the system, regardless of the approach used for implementing optimization. In 
the future, we will work with subject matter experts to improve our precision in defining 
operationally relevant intents. 
 
Secondly, program transformations can introduce a large number of control parameters to the 
program. In the case of the Kalman Filter, the transformation increases the number of inputs by 
at least an order of magnitude. This implies that we need to search an exponentially large space 
of possible input combinations. While our machine learning models enable us to represent this 
space relatively compactly, we still need to generate a large amount of data to train the model. 
For the software components we worked on, which were relatively simple, we were able to train 
a basic model effectively. As the components become more complex, we will need a more 
detailed understanding of the parameter space and more intelligent model designs. 
 
Finally, these experiments and results further highlight the complementary roles that 
optimization and verification play in our adaptation process. Without the verifier, an over-eager 
optimizer may choose parameters that would further damage an already perturbed UUV. 
Conversely, a verifier without an optimizer, while robust and fault tolerant would be brittle to 
new scenarios where prior knowledge is lacking or non-existent. Overall, both are necessary to 
provide meaningful and practical adaptations. 
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