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Abstract—The outputs of a program that processes secret data
may reveal information about the values of these secrets. This
paper develops an information leakage model that can measure
the leakage between arbitrary points in a probabilistic program.
Our aim is to create a model of information leakage that makes
it convenient to measure specific leaks, and provide a tool that
may be used to investigate a program’s information security. To
make our leakage model precise, we base our work on a simple
probabilistic, imperative language in which secret values may
be specified at any point in the program; other points in the
program may then be marked as potential sites of information
leakage. We extend our leakage model to address both non-
terminating programs (with potentially infinite numbers of secret
and observable values) and user input. Finally, we show how
statistical approximation techniques can be used to estimate our
leakage measure in real-world Java programs.

Keywords-information leakage; probabilistic language; non-
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I. INTRODUCTION

This paper presents a framework that can be used to measure

information leaks between arbitrary points in a program. Our

motivation is to allow a programmer or analyst examining

source code to verify that the values stored in particular

variables at particular times cannot be deduced from the values

that will be visible to an attacker. Our framework introduces

two annotations: secret, for marking the values stored in

selected variables as secret at particular points in the program,

and observe, for identifying variables as potential leakage sites

due to an attacker’s ability to observe their values at those

points. After an analyst annotates their secret and observable

variables, our framework measures how much information can

be deduced about the secret values from the observable values.

As a motivating example, we consider the following hypo-

thetical fragment of source code from a card game:

...

Card theirCard = deck.drawCard();

observe(theirCard);

socket.write(theirCard);

...

Card myCard = deck.drawCard();

secret(myCard);

...

determineWinner();

In this example, a Card object (theirCard) is drawn

from the deck and sent over an insecure socket to a remote

opposing player; since this is a site of a potential information

leak, the object is marked as observable. Later, another Card

object (myCard) is drawn from the deck, and the winner of

the game then depends on this object in some way (e.g., on its

face value); therefore, it is marked as secret. In this example,

we wish to measure how much information an opponent learns

about myCard by observing theirCard (rather than the

randomness of myCard in isolation). The best possible im-

plementation of this program provides the opponent observing

theirCard with only a very small amount of information

about the face value of myCard (i.e., that it is not the

face value of theirCard). However, this may not be the

case in poor implementations: if the deck is shuffled with a

weak pseudorandom number generator (PRNG), the face value

of myCard may be predictable from that of theirCard;

in an even poorer implementation, the deck itself may be

stored inside the Card object of theirCard somehow and

the future face value of myCard is leaked entirely when

theirCard is sent over the socket. A similar example is a

program that generates a nonce that is exposed to a potential

attacker, and then uses the same PRNG to generate a session

key; the programmer would want to ensure that the session

key cannot be guessed from the value of the nonce.

In this sense, our aim is to create a model of information

leakage that makes it convenient to measure leaks between

given points in a program, rather than a system that guarantees

freedom from all types of leakage between variables at all

times. Our model may not detect information leaks that occur

between variables that have not been annotated, but we believe

that in most cases the programmer understands their code best,

and therefore that the ability to detect leaks at selected points

will provide a more practical, targeted mechanism than one

that attempts to detect all possible leaks (and may also return

many false positives).

A complication of introducing these annotations is that

they can occur anywhere (e.g., in loop bodies) and in any

order, so it is important to precisely define the leakage being

measured. To provide the theoretical base for a tool that

measures such leakage, we present a formal framework in

which secret information and potential sites of leakage can be

annotated. Probability is an important aspect of many security

protocols and systems, so we base our framework on a simple

probabilistic, imperative language that we call CH-IMP. The

language includes primitives for declaring new variables in

a particular scope, assigning new values to variables, and

annotating the values stored in selected variables as either

secret or observable at that particular point during execution.

We note that both the secret and observe commands operate

on the variable only when the command is evaluated, and do

not indicate that all values ever stored in the variable should be
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Fig. 1. An overview of the classic information leakage model and our leakage model (including variations on our leakage model).

treated as secret or observable for the duration of the program.

Therefore, the values we wish to keep secret may be stored in

variables that are declared at the start of the program, or may

be values that result from complex computations performed

during the program’s execution.

We define the semantics for a CH-IMP program in terms

of a discrete-time Markov chain (DTMC) augmented with

information about occurrences of secret and observable values.

The DTMC can then be used to calculate the joint probability

distribution of the secret and observable values, and therefore

any of the standard measures of information leakage, such

as mutual information, min-entropy leakage, and guessing

entropy. To explain the intuition behind our model of leakage,

we define the “worst possible semantics” for a program that

allows an attacker to observe the value of every variable

annotated with the secret command, ignoring all other outputs.

Our framework reveals how much an attacker learns about

the output of a program executed with this worst possible

semantics by observing the output of the program when

executed with CH-IMP’s standard semantics.

Our framework moves away from the standard model of

measuring information leakage, where secret inputs are de-

clared before a program executes and publicly observable

outputs are produced upon termination (as depicted in Fig. 1a).

Instead, the framework permits secret values and observable

outputs to occur at arbitrary points (e.g., inside loops or in

blocks of code that are only reached with a small probability).

Since our model produces both secret and observable values as

a side-effect of program execution (see Fig. 1b), our systems

are not formal information-theoretic channels. Although for

any terminating program there exists an equivalent program

that defines all of its secrets before execution and outputs

the observations upon termination, real-world programs are

sufficiently complex that rewriting them in this way becomes

difficult or impractical. Our model is general enough to also

allow secret values to be defined before execution (see Fig. 1c),

which we will later formalise in Section III-B. In this case,

the secret values present upon termination of the program are

those defined before or during execution, and our measure of

information leakage is what can be learnt about these values

from the observations.

In Section V, we extend the model further to include a

function that supplies inputs to a program from a finite range,

based on the previously-observed values (Fig. 1d). The initial

secret values cannot be affected by the input function, but

the secret values present upon termination of the program can

(e.g., if the program uses an attacker-controlled input as a

secret value at a later point, our extended model considers the

attacker to have learnt the secret value). We show that, when

deciding whether there exists any input function that causes a

program to leak information, it is sufficient to test the program

with the input function that produces all possible inputs with

equal probability.

Our framework also allows us to define the information

leakage of programs that do not terminate and therefore may

produce an infinite list of values as their output. We define

the leakage of non-terminating programs to be the limit of

the leakage as the number of observations tends to infinity.

We show this limit exists, and can be calculated by taking

the limit of the finite leakage measurements; we also give an

exact expression of its value using Lebesgue integration [1].

Our contribution here is to provide a meaningful method of

reasoning about leakage from non-terminating programs that

may have an infinite number of secret and observable values.

We provide a prototype implementation of our semantics

in OCaml that is suitable for checking for information leaks

in programs of low to moderate complexity. We present an

example that shows how this tool can be used to calculate

meaningful measures of information leakage.

To allow our framework to scale, we apply statistical ap-

proximation techniques [2] to estimate the measure of informa-

tion leakage. These techniques provide a confidence interval

for an estimation of information leakage from trial runs of

a program. We have developed a tool, LeakWatch, which

repeatedly executes Java classes annotated with “secret” and

“observe” commands and estimates our framework’s leakage

measure. We show that, for small programs, the OCaml and

LeakWatch implementations of the framework produce com-
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parable results and that statistical approximation can be used to

estimate meaningful measures of information leakage in large

programs written in real-world programming languages.

The rest of the paper is organised as follows. In Section II,

we define the CH-IMP syntax and motivate our leakage model.

In Section III, we define the semantics of our framework using

DTMCs and formalise the corresponding notion of information

leakage using probability spaces and mutual information. We

then extend our model to address non-terminating programs

in Section IV by considering programs that produce an un-

bounded number of both secret and observable values. In

Section V, we extend our model further to include external

inputs. We discuss implementations of our framework in

Sections VI and VII, and conclude in Section VIII.

A version of this paper with full proofs can be found at [3].

A. Related Work

Information leakage in deterministic programs has been in-

vestigated previously (e.g., [4], [5], [6], [7], [8]). While related

to our work, much of this previous research does not directly

investigate the detection of information leaks in probabilistic

programs. A number of probabilistic languages have been

presented previously (e.g., [9], [10]), but most were designed

for reasoning under uncertainty, which is inappropriate for

our work where the entire state space must be known. A

related probabilistic language is described in [11]. This work

uses operational and denotational semantics to describe the

behaviour of the language that, while intuitive, make it more

difficult to measure the leakage of non-terminating programs;

this complexity is not present in CH-IMP’s semantics.

Using information theory to measure leakage in probabilis-

tic systems is also common (e.g., [12], [13]), but most of this

work is based on models that measure leakage from secrets

declared at the start of a program to outputs observed upon

termination; our model of information leakage is more com-

plex. McIver & Morgan [14] propose a method of formalising

sequential, non-deterministic programs probabilistically; their

work preserves the secrecy of high-security variables through-

out execution of the program, rather than just protecting their

initial values. We note that our model intentionally does not

consider the overwriting of secret variables to be the cause of

an information leak. More recent work by McIver et al. [15]

develops the model further. Askarov & Sabelfield’s [16] in-

formation leakage model allows for the safe public disclosure

of previously-secret values during program execution, but is

qualitative rather than quantitative. Alvim et al. [17] propose

the use of channels with memory and feedback to model an

attacker with the ability to influence the distribution on secret

values in terminating interactive programs; the attacker in our

model does not have this ability, and studies the information

leakage from non-terminating programs. Theoretical models

of information leakage in non-terminating programs have been

proposed before: O’Neill et al. [18] propose one such model,

but it focuses on protecting the strategies of high-level users

of the system rather than the values stored in particular high-

security variables at specific moments.

Tools that quantitatively measure information leakage in

simple languages have been designed previously. QIF [19] is a

related tool capable of measuring leakage from a single high-

security input to a single low-security output in a language

similar to CH-IMP, but a probability distribution on the

values of the high-security input must be defined before the

program is executed; CH-IMP can measure the leakage from

secret values to observable values at arbitrary points during

execution. QUAIL [20] measures information leakage from

non-terminating programs and uses a probabilistic language

syntactically similar to CH-IMP, but relies on a different

information leakage model: all variables must be declared

before the system executes.

Various practical frameworks have previously been created

for measuring information leakage in real-world source code:

like CH-IMP, Jif [21] uses source code-level annotations to

detect leaks in large Java projects, although it is based on a

qualitative information leakage model, and cannot calculate

the severity of leaks it detects. Flowcheck [22], a Valgrind-

based information leakage tool for C, is able to operate on

large software projects, but at the expense of the programmer

being able to annotate the source code easily, which is a

specific objective of our work.

II. INFORMATION LEAKAGE: MOTIVATION AND MODEL

In this section, we formally define the syntax of the CH-IMP

language, and motivate our leakage model with some example

programs that subtly leak information.

A. The CH-IMP Language

The goal of our work is to formally define an information

leakage model that can detect and measure information leaks

between arbitrary points in programs. Our motivation is to

make it as convenient as possible for programmers to utilise

this model in their own programs, so we allow variables in

CH-IMP to be identified as secret or observable at specific

points in a program with minimal annotation. The syntax of

the language is defined as follows.

Definition 1: A CH-IMP program is a command C con-

forming to the grammar

C ::= new V := ρ
| V := ρ
| if (B) { C } else { C }
| while (B) { C }
| C; C
| start
| end
| secret V
| observe V

where V ranges over variable names, B ranges over Boolean

expressions (i.e., evaluating to one of {true, false}), and ρ

ranges over probability distributions on arithmetic expressions:

variables, integers, or the result of evaluating two variables

or integers with one of the standard arithmetic operations

{+, -, *, /,mod, xor}.
We only consider CH-IMP programs that are well-formed;

i.e., ones where variables are declared only once and are not
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accessed out of scope. We provide the formal semantics for

CH-IMP in Section III-B. The first five production rules are

conventional: new declares a new variable V and assigns to

it an integer value according to the probability distribution ρ

(e.g., ρ = { 0 7→ 0.5, 1 7→ 0.5 } could simulate the tossing

of a fair coin); assignments, conditional statements, loops and

sequential composition are also standard constructs. start and

end are not used directly, but are inserted by the semantic

rules to create and destroy levels of variable scope (e.g., when

evaluated, “while (B) { C }” is expanded to “while (B) { start;

C; end }”).

B. Leakage Model: Examples

The measurement of information leakage from secret values

declared at the start of a program to public values at its end

is an established and well-understood concept (e.g., [7], [12],

[6]), as is detecting information leaks to public variables at any

location within a program (e.g., [21]). Allowing both secret

and observable values to occur at arbitrary points in programs

causes subtleties that must be addressed before we can fully

define our model of information leakage.

We model an attacker that has access to both the source

code of a program and the observable values produced by

the program. The attacker cannot identify which observe

command caused a particular observation beyond what can

be deduced from the source code and the observable values.

We note that a more powerful attacker that does have this

ability can be modelled by adding a unique identifier to each

observable value.

Our model measures how much information is learnt (i.e.,

the reduction in uncertainty) about the program’s secret values

from its observable values. We do not measure the randomness

or predictability of the secrets in isolation; our goal is to

answer the question “is it safe to allow an attacker to observe

the values of variables annotated with the observe command?”.

Likewise, marking values dependent on each other as secret

does not increase the overall uncertainty about the secret

values, and thus does not increase the overall leakage.

Our first example demonstrates that we must measure the

information leakage from secret values to all observable

values, rather than each individual observable value:

new rand := { 0 7→ 0.5, 1 7→ 0.5 };
observe rand ;
new sec := { 0 7→ 0.5, 1 7→ 0.5 };
secret sec;
new out := sec xor rand ;
observe out;

In this program, the attacker observes two values: the value

of rand on line 2, and the value of out on line 6. The secret

annotation on line 4 indicates the programmer’s concern about

possible information leaks regarding the value of sec at that

point. In this case, the two observed values together leak

the secret value, but individually they leak no information to

the attacker. This example shows that we must measure the

information leakage to the list of all observed values, including

those that are observed before other variables are annotated as

secret.

Secondly, we consider the possible leakage from sets of

secrets:

new sec1 := { 0 7→ 0.5, 1 7→ 0.5 };
new sec2 := { 0 7→ 0.5, 1 7→ 0.5 };
secret sec1;
secret sec2;
new out := sec1 xor sec2;
observe out;

While this program does not leak any information about the

secret values of sec1 or sec2, an attacker does learn whether

the values are equal; therefore, some information is leaked.

This example shows that we must consider the leakage from

the set of all secret values, rather than measuring the leakage

from each secret value individually.

Thirdly, we consider a secret annotation occurring inside a

loop:

new result := 0; new i := 0; new sec := 0;
while (i < 4) {

observe result ;
sec := { 1 7→ 0.0625, . . ., 16 7→ 0.0625 };
secret sec;
if (i == 2) {

result := sec;
}
i := i + 1;

}

This program marks different variables’ values as secret

and observable inside a loop, and leaks sec’s third value

via result on the fourth iteration of the loop (thus, 4 bits of

information are leaked). Again, this example shows that the set

of all observable values must be considered when calculating

the possible leakage of any secret value, and not just the

observable values that occur in a particular iteration of the

loop. It also shows that, when a variable contains different

secret values at different times during execution, we must

measure the leakage from the set of all secret values that have

been stored in that variable.

Our fourth example contains a situation in which no vari-

able’s value may be marked as secret:

new rand := { 0 7→ 0.5, 1 7→ 0.5 };
if (rand == 1) {

new sec := { 0 7→ 0.5, 1 7→ 0.5 };
secret sec;
observe sec;

} else {
observe rand ;

}

If an attacker observes 1 as the output of this program, they

know the secret value of sec is 1; however, if the attacker

observes the output 0, there is a 1
3 probability that sec’s

secret value is 0 and a 2
3 probability that no variable’s value

was annotated as secret. If we restrict our measurement of

the leakage to only those cases in which the variable’s value
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is marked as secret, we would conclude that this program

always leaks the value, which would be an overestimation.

Therefore, in programs where a variable’s value may or may

not be marked as secret, our model states that the program

leaks some information if an attacker can identify whether

a variable is annotated as secret, even if they do not learn

anything else about the value.

Similarly, we state that the attacker learns information if

they discover the order or number of secret declarations, even

if they learn nothing about the values themselves. For example,

we consider the following program to leak information:

new x := { 0 7→ 0.5, 1 7→ 0.5 };
new y := { 0 7→ 0.5, 1 7→ 0.5 };
observe y ;
if (y == 1) {

new z := { 0 7→ 0.5, 1 7→ 0.5 };
secret x ; secret z;

} else {
secret x ;

}

In this program, the attacker learns whether only x or both

x and z were annotated as secret, but learns nothing about the

value of either variable. We consider this to be an information

leak, since the fact that a program is processing some confi-

dential data, and what the program considers confidential for a

particular execution, may reasonably be sensitive information.

These definitions of what is and is not an information

leak are enforced by the semantic rules in Section III-B. We

note that it is possible to define a sound leakage model that

does not consider the order or number of secret declarations

as confidential by making minor changes to our semantics;

however, we have chosen the most conservative leakage model

on the grounds that a user may consider the order and number

of secrets a program possesses to be secret information in its

own right.

III. INFORMATION LEAKAGE FOR THE CH-IMP

LANGUAGE

We now formally define the semantics of CH-IMP and

the corresponding model of information leakage outlined in

Section II. We will define the semantics in terms of discrete-

time Markov chains, so we begin with some brief background

material on this topic.

A. Probability Spaces and Discrete-Time Markov Chains

1) Probability Spaces: Non-terminating programs may pro-

duce an infinite number of observable values; therefore, we

cannot represent the probability of observing values as a

simple mapping from particular values to a number between 0

and 1. Instead we must represent the probability of observing

values as a probability space, which is a triple (Ω,B, P ).
Here, Ω is the set of all possible events (i.e., secret and

observable values), which is often infinite. B is a σ-algebra

over the set Ω, which is a set B ⊆ 2Ω of subsets of Ω that

contains ∅ and is closed under complement and countable

unions. For a set G ⊆ 2Ω, we say that σ-algebra B is generated

by G if it is the smallest σ-algebra containing G. P : B → [0, 1]
is a probability measure over (Ω,B); for each member of B it

gives the probability of an event from that set occurring. We

call (Ω,B) a measurable space and sets b ∈ B are said to be

measurable.

Let (ΩX ,BX) be another measurable space. A random

variable X defined on (Ω,B) and taking values in (ΩX ,BX)
is a function X : Ω → ΩX such that, for each bX ∈ BX ,

X−1(bX) ∈ B where X−1(bX) = {ω ∈ Ω | X(ω) ∈ bX}.
This means that the random variable X has an associated

probability distribution PX : BX → [0, 1] giving the probabil-

ity of each bX ∈ BX :

PX(bX) = P (X−1(bX)).

Finally, for two (probability) measures P1 and P2, we say

that P1 is absolutely continuous with respect to P2, if P1(b) =
0 for every set b for which P2(b) = 0.

2) Discrete-Time Markov Chains: We use a discrete-time

Markov chain (DTMC) to represent the possible executions

of a CH-IMP program, and then to generate the probability

spaces that represent a program’s secret and observable values.

A DTMC is a tuple D = (S, s̄,P) where:

• S is a (countable) set of states;

• s̄ ∈ S is an initial state;

• P : S×S → [0, 1] is a transition probability matrix such

that
∑

s′∈S P(s, s′) = 1 for all s ∈ S.

The matrix P gives the probability P(s, s′) of making a

transition between any pair of states s, s′ ∈ S. A path of D
is a (finite or infinite) sequence of states ω = s0s1s2 . . . such

that s0 = s̄ and P(si, si+1) > 0 for all i ≥ 0. The set of all

infinite paths of D is denoted ΩD and we can build (following

[23]) a probability space over ΩD as follows. For a finite path

π=s0 . . . sn, we assign probability P(π)
def
=
∏n−1

i=0 P(si, si+1).
The basic cylinder Cyl(π) consists of all infinite paths starting
with π. We then define a probability space (ΩD,BD, PD) over
the infinite paths ΩD of D, where:

• BD ⊆ 2ΩD is the σ-algebra generated by the set of basic

cylinders {Cyl(π) |π is a finite path in D};
• PD is the unique measure with PD(Cyl(π)) = P(π) for
all finite paths π.

The probability measure PD allows us to define the probability

of certain (measurable) events of interest in the system being

modelled by the DTMC. We will also define random variables

on this probability space.

B. CH-IMP Semantics

We define the semantics of a CH-IMP program P as a

discrete-time Markov chain D. The states of D describe

the current status of the program, annotated with additional

information needed to compute information leakage; they are

of the form (C, σ,S,O), where:

• C is the list of commands to be executed (i.e., an

expression derived from the CH-IMP grammar);
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(Declaration)

(new V := ρ; C, o :: σ,S ,O)
ρ(n)
−−−→ (C, ({V 7→ n} ∪ o) :: σ,S ,O)

(Secrecy)

(secret V ; C, σ,S ,O)
1
−→ (C, σ,S :: (V 7→ [[V ]]σ),O)

(Observation)

(observe V ; C, σ,S ,O)
1
−→ (C, σ,S ,O :: [[V ]]σ)

(Assignment)

(V := ρ; C, σ,S ,O)
ρ(n)
−−−→ (C, σ ⊕ {V 7→ n},S ,O)

σ(B) → true
(If true)

(if (B) { CT } else { CF }; C, σ,S ,O)
1
−→ (start; CT ; end; C, σ,S ,O)

σ(B) → false
(If false)

(if (B) { CT } else { CF }; C, σ,S ,O)
1
−→ (start; CF ; end; C, σ,S ,O)

σ(B) → true
(While true)

(while (B) { CW }; C, σ,S ,O)
1
−→ (start; CW ; end; while (B) { CW }; C, σ,S ,O)

σ(B) → false
(While false)

(while (B) { CW }; C, σ,S ,O)
1
−→ (C, σ,S ,O)

(Scope creation)

(start; C, σ,S ,O)
1
−→ (C, {} :: σ,S ,O)

(Scope destruction)

(end; C, o :: σ,S ,O)
1
−→ (C, σ,S ,O)

Fig. 2. The information leakage semantics of CH-IMP. These rules define the transition probability matrix for the discrete-time Markov chain described in
Section III-B.

• σ is a list of variable scopes (consisting of mappings from

variable names to values), with the narrowest scope at the

start of the list;

• S is a list of mappings from variable names to secret

values at particular points during execution (as declared

with the secret command);

• O is a list of values that have been marked as observ-

able (with observe commands) up to this point in the

program’s execution.

The transition probability matrix of the DTMC (P) is

defined according to the semantic rules in Fig. 2. s
p
−→ s′

denotes the existence of a transition from state s to state s′

with probability p, and σ⊕{V 7→ n} denotes the replacement

of the mapping for V with V 7→ n in the narrowest scope in

σ already containing a mapping for V .

The declaration rule adds a new variable mapping to the

current scope according to the probability distribution ρ. The

assignment rule uses the ⊕ operator to overwrite the mapping

for the variable in the narrowest possible scope. The rules

for if and while are standard, with the addition of start and

end to signify the creation and destruction of a level of scope

respectively: start adds an empty mapping to the start of the

list of mappings that will contain all new declarations in the

current scope, and end removes the leftmost mapping from

the list, unbinding its variables and potentially reducing the

number of states (since two states may only differ by the

variables bound in their narrowest scopes).

The key new rules of our semantics are those for secret

and observe. The “observe V ” command signifies that the

value of the variable V is observable by the attacker, so the

semantic rule adds the value of V to the end of the list of

observable values O. We note that only the value is added to

the list: nothing is added that indicates the variable name or the

position in the program of this particular command; therefore,

the attacker cannot learn this information (per Section II-B).

A stronger attacker model, in which the attacker could learn

the variable name or location of the command in the program,

could be encoded in our framework by inserting an additional

observation that revealed this information.

The “secret V” command signifies that the value of V

is to be treated as secret at this point during execution.

Its semantic rule therefore records both the name of the

variable and its value at this point. As these are stored in an

ordered list, our model also considers the order in which secret

annotations occur to be confidential. If this were instead a set

of mappings from variables to ordered lists, our model would

not consider the ordering of secret commands operating on

different variables to be confidential, and if it were simply a set

of mappings, the ordering of secret commands would not be

confidential at all. We have constructed the most conservative

model, since it provides the strongest security guarantees.

By inspecting the semantic rules in Fig. 2, we see that at

most one rule can be applied to any state s and that the sum of

the outgoing transitions for any such rule is always 1. Since
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our definition of a DTMC insists on transition probabilities

summing to 1 for all states, we add a self-loop (i.e., set

P(s, s) = 1) for any (terminating) state s that matches no

semantic rules. Alternatively, we could adapt our definition of

the probability space over DTMC paths to range over both

infinite paths and finite paths ending such a terminating state.

The initial state of D is (P , 〈{}〉, 〈〉, 〈〉) and we will assume

that the state space, denoted S, is the set of all possible states

that can be reached from this state by applying the rules in

Fig. 2; this gives a set of (infinite) paths ΩD ⊆ Sω and a

probability space (ΩD,BD, PD) over ΩD .

We can also adapt our semantics to allow for the possibility

of defining initial secret values (i.e., before P is executed)

according to some probability distribution PXI . We do so

by, for each valuation of variables xi in the support of PXI ,

adding a new state s̄i = (P , 〈{xi}〉, 〈xi〉, 〈〉) to S and adding a

transition from the original initial state s̄ to s̄i with probability

P(s̄, s̄i) = PXI(xi).

C. Leakage Measurement

To quantify the information leakage from the program’s

secret values to its observable values, we use the information-

theoretic measure of mutual information [24]. This is a com-

mon measure of information leakage: the mutual information

of the probability distributions on the secret values and on the

observable values tells us how much information an attacker

learns about the secret values by inspecting the observable

values. (For a discussion of the precise security guarantees

provided by mutual information and other leakage measures,

we refer the reader to the literature; e.g., [25], [26].)

We use X and Y to refer to secret and observable values,

respectively. We denote by DX the set of all possible secret

values (including a unique value to indicate that no secret

values have been seen) and by DY the set of all possible

observable values. In accordance with the presentation of

the semantics in Section III-B, DX comprises all possible

sequences of mappings from a variable name to an (integer)

value and DY comprises sequences of (integer) values. In

this section, we consider finite scenarios: we assume that any

execution of the program results in a finite number of secret

and observable values, and that these always occur within a

finite number of steps of execution. In later sections, we will

relax this requirement.

The probability of a program’s list of secret value mappings

being x ∈ DX will be denoted PX(x) and the probability of

it producing the observable values y ∈ DY will be PY (y).
More precisely (and to aid the more general definitions later

in the paper), mutual information is defined in terms of a pair

of random variables: one for the secret values and one for the

observable values. Thus, we define random variables X and Y

on the probability space over paths in the DTMC D. For secret

values, the functionX : ΩD → DX projects any path ω ∈ ΩD

onto a list of secret value mappings (S in the state tuple). For

observable values, the function Y : ΩD → DY projects any

path ω ∈ ΩD onto the finite sequence of observable (integer)

values (O in the state tuple).

As mentioned in Section III-A, these random variables

induce the probability distributions PX and PY over DX and

DY , respectively. We can also define the joint probability

distribution PXY over DX×DY . The mutual information

between secret values and observable values is given by the

equation:

I(X ;Y ) =
∑

x∈DX ,y∈DY

PXY (x, y) log2

(

PXY (x, y)

PX(x)PY (y)

)

.

Note that PX(x)=Σy PXY (x, y) and PY (y)=Σx PXY (x, y),
so the mutual information can be calculated from the joint

probability distribution PXY alone. Under the finiteness as-

sumptions that we impose in this section, the joint probability

distribution PXY can be determined from an analysis of the

transient probabilities of D, which give the probability of

being in each possible state at a particular time step n. In

this section, we require that all secret and observe commands

always occur within some finite number of steps of execution,

say nf . We can therefore compute PXY (x, y) for each x, y

by summing the transient probabilities at step nf for all states

(C, σ,S,O) of the DTMC in which x matches S and y

matches O.

A related measure is the conditional entropy of X given

Y , which describes the attacker’s uncertainty about the secret

values when the observable values are known. It is given by

the equation:

H(X |Y ) =
∑

x∈DX ,y∈DY

PXY (x, y) log2

(

PY (y)

PXY (x, y)

)

.

Another popular measure of information leakage is the

min-entropy leakage of the secret values after inspecting the

observable values [25]; this gives a measure of how difficult

it is for the attacker to guess the secret values in one attempt.

It is defined as:

log2
∑

y∈DY

max
x∈DX

PXY (x, y)− log2 max
x∈DX

∑

y∈DY

PXY (x, y).

Like mutual information, conditional entropy and min-

entropy leakage can both be calculated from the joint proba-

bility distribution, so we can also compute these measures for

finite, terminating programs.

D. Intuition: The Worst Possible Program Semantics

The measure of leakage given above defines what an at-

tacker learns about the stream of secret values by observ-

ing the stream of observable values. To give some intuition

about what this actually means, we introduce the idea of

the “worst possible” semantics for a program that simply

leaks all information marked as secret to the attacker: states

are of the form (C, σ,S), the observe command is replaced

with a skip (no-op) command, and the secret command is

replaced with one that exposes the variable name and its secret

value to the attacker (thus the attacker can observe S). A

program evaluated with this “worst possible” semantics leaks

all information about every occurrence of the secret command.

Let W be the random variable representing the secret values
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generated by these semantics. Our measure of leakage can be

understood as the amount of information an attacker learns

about the output a program when it is executed with this

“worst possible” semantics by observing the output of the

program when it is executed with the semantics of Fig. 2;

i.e., I(X ;Y ) = I(W ;Y ). This trivially holds because X and

W are defined in the same way.

IV. CALCULATING THE LEAKAGE OF NON-TERMINATING

PROGRAMS

A. Leakage over Infinitely Many Observable Values

Since programs do not necessarily terminate, we now extend

our leakage model to programs that may produce an infinitely-

long list of observable values. In what follows, we use “non-

terminating” specifically to refer to such programs (rather

than those that may continue indefinitely, but only generate

a finite number of observable values). Our contribution in this

section is to formalise a way in which we can reason about

information leakage for such non-terminating programs. For

now, we continue to assume that the number of secret values

is finite; in Section IV-C, we also relax this requirement.

We approximate mutual information for an infinite number

of observable values by considering bounded versions of it.

We do so by restricting our attention to the first n observable

values and the corresponding secret values.

We define Ω
(n)
D to be the set of paths in the DTMC for

a program that have been pruned after the first n observable

values, i.e., every path in Ω
(n)
D either has exactly n observable

values or has fewer than n observable values and terminates,

or diverges silently. We note that Ω
(n)
D may include an arbitrary

number of paths that may be arbitrarily long. We denote the

sets of secret values and observable values in the paths of Ω
(n)
D

as D
(n)
X and D

(n)
Y respectively.

Let P
(n)
X (x) and P

(n)
Y (y) denote the probabilities of secret

values being equal to x ∈ D
(n)
X and observable values being

equal to y ∈ D
(n)
Y respectively. As before, we write P

(n)
XY

for the joint probability distribution. We can now define the

leakage that occurs after n observations as:

I(X(n);Y (n)) =
∑

x∈D
(n)
X

, y∈D
(n)
Y

P
(n)
XY (x, y) log2

(

P
(n)
XY (x, y)

P
(n)
X (x)P

(n)
Y (y)

)

whereX(n) and Y (n) denote the random variables correspond-

ing to P
(n)
X and P

(n)
Y . Notice that, since we only consider n

observations, and we restrict the number of secret values to

be finite, the sets of values D
(n)
X and D

(n)
Y are also finite for

any given n.

Next, we define the leakage from a non-terminating program

to be the limit of the above expression as n tends to infinity.

Definition 2: The leakage from a non-terminating program

with a finite number of secret values and a possibly infinite

number of observable values is:

lim
n→∞

I(X(n);Y (n))

= lim
n→∞

∑

x∈D
(n)
X

, y∈D
(n)
Y

P
(n)
XY (x, y) log2

(

P
(n)
XY (x, y)

P
(n)
X (x)P

(n)
Y (y)

)

.

The intuition here is that the leakage from a non-terminating

program is defined as the amount of information an attacker

learns about the secret values by inspecting the observable

values forever. While it may not be practical for a real attacker

to learn this exact amount of information, our definition

indicates that a patient attacker will be able to learn an

arbitrary approximation of it. We note that this does not allow

the attacker to observe the time at which the observations take

place; we discuss an extension that permits timed observations

in Section IV-D.

Due to our assumption of a finite number of secret values,

the limit in Definition 2 always exists, and the leakage is

well-defined. Formally, we state this as follows:

Theorem 1: The leakage from a non-terminating program

with a finite number of secret values and a possibly infinite

number of observable values (as defined in Definition 2)

exists; i.e., I(X(n);Y (n)) converges.

Note that I( lim
n→∞

X(n); lim
n→∞

Y (n)) is not defined, so this

proof is not trivial. To prove Theorem 1, we use the following

lemma:

Lemma 1: For all n, I(X(n+1);Y (n+1)) ≥ I(X(n);Y (n)).

Proof of Theorem 1: We note that I(X(n);Y (n)) ≤
I(X(n+1);Y (n+1)) for any n and that I(X(n);Y (n)) ≤
log2 |DX |, where |DX | is the (finite) number of secret values.

Therefore I(X(n);Y (n)) is non-decreasing and bounded from

above, and so it converges.

B. An Exact Expression for Non-Terminating Leakage

Theorem 1 reveals our notion of non-terminating leakage

to be well-defined, and taking the limit provides a method of

calculating it. However, we believe that it is also interesting

to find an exact expression that defines its value.

Firstly, we note that it does not suffice to use a definition

expressed in terms of (Riemann) integration:
∫

DX

∫

DY

log2

(

PXY (x, y)

PX(x)PY (y)

)

PXY (x, y) dy dx

since the probability distributions PX and PY are not con-

tinuous functions on the real numbers, but defined in terms

of infinite sequences of integers; therefore, this equation

does not define a value that exists. Instead, we consider the

more general notion of mutual information [1] defined using

Lebesgue integration as follows. Riemann integration works

by partitioning the domain of a function, and here the domain

of the probability distributions (the observable values) is not
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continuous. Lebesgue integration, however, works by partition-

ing the range of a function, so using Lebesgue integration we

can find an exact expression for leakage from non-terminating

programs.

Recall, from Section III-C, that we defined random variables

X and Y on the probability space over (infinite) paths of the

discrete-time Markov chain semantics of a CH-IMP program.

These induced the probability distributions PX and PY over

the sets DX and DY , giving the probability of each possible

list of secret value mappings x ∈ DX and list of observable

values y ∈ DY .

Previously, we imposed restrictions of finiteness on DX and

DY (which ensured that PX and PY were discrete probability

distributions and allowed us to express mutual information

as a finite summation). However, by relaxing this restriction

(and allowing DY to contain infinite sequences of observable

values), we see that X and Y remain well-defined random

variables, with corresponding probability measures PX and

PY . We can also define the joint probability distribution PXY

and the product distribution PX × PY of PX and PY .

To find the fraction
P

(n)
XY

(x,y)

P
(n)
X

(x)P
(n)
Y

(y)
as n tends to infinity,

we use the Radon Nikodym Theorem (see e.g., [27]), which

states that for Lebesgue integration:

Theorem 2 (Radon Nikodym Theorem): Given two σ-finite

measures ν and µ, such that ν is absolutely continuous with

respect to µ, there exists a function f such that for any A:

ν(A) =
∫

A
fdµ. We write f as dν

dµ
.

Since P
(n)
XY (x, y) is absolutely continuous with respect

to P
(n)
X (x)P

(n)
Y (y), we know that dPXY

d(PX×PY ) is defined.

We can then give an exact expression for the leakage from

non-terminating programs:

Theorem 3: The leakage lim
n→∞

I(X(n);Y (n)) from non-

terminating programs as defined in Definition 2 equals:

I(X ;Y ) =

∫

log2

(

dPXY

d(PX × PY )

)

dPXY .

Proof Sketch: Gray ([1], p. 80, Lemma 5.2.3) proves

that if P is absolutely continuous with respect to M then

D(P ||M) =
∫

log2
dP
dM

(ω)dP (ω), where D is the relative

entropy. As PXY is absolutely continuous with respect to

PX × PY , we obtain D(PXY ||PX × PY ) = I(X ;Y ), thus
the result follows.

C. Leakage over Infinitely Many Secret Values

We now consider non-terminating programs that produce an

infinite number of secret values. Clearly, an infinite amount of

secret information could be leaked by such a program, so the

leakage as defined by Definition 2 may tend to infinity. It is

more useful to consider a measure of the rate of leakage, or,

more precisely, the amount of information leaked per secret

value.

Definition 3: The rate of leakage from a non-terminating

program with a potentially infinite number of secret and

observable values is defined as:

lim
n→∞

∑

x,y

1

secrets(x)
P

(n)
XY (x, y) log2

(

P
(n)
XY (x, y)

P
(n)
X (x)P

(n)
Y (y)

)

where n is the number of observable values and secrets(x)
is the number of individual secret values defined in x (unless

x is the single value that indicates that there were no secret

values, in which case secrets(x) = 1).1

This gives the average amount of information learned by

an attacker per secret command. We note that this limit is

not guaranteed to exist. For instance, a program might leak

secret values from progressively larger domains and so the

value might tend to infinity, or a program could alternately

leak secret values and then not leak secret values, causing

the leakage rate to oscillate rather than converge. However,

we argue that for programs where this leakage rate does not

converge, there is no natural definition of information leakage;

for programs where this rate does converge, it provides a

natural measure of leakage for non-terminating programs.

D. Detecting Time-Based Leakage

We do not model an attacker that is capable of measuring

time, and we therefore do not consider time-based information

leaks. We could model an attacker’s ability to observe the

passing of time by appending a symbol τ to the list of

observations at each time step, e.g.:

(V := ρ; C, σ,S,O)
ρ(n)
−−−→ (C, σ ⊕ {V 7→ n},S,O :: τ)

One side-effect of this addition is that the n that tends to

infinity for non-terminating processes would equal both the

number of observable values and the number of steps taken

by the DTMC, therefore simplifying our framework. However,

it would also lead to a very strong attacker model and such a

simple discrete model of time may be unrealistic. If a realistic

model of a program’s execution time and the observable

power of the attacker existed, it could be represented in our

framework in this way.

V. EXTERNAL INPUTS TO A PROGRAM

We extend our model to account for external inputs to a

program by defining an “input V : R” command that takes an

(integer) value as input from a finite range R and binds it to

the variable V . To represent the selection of particular inputs,

we introduce a probabilistic input strategy function f , which

takes the observable values encountered at this execution step

and returns a probability distribution ρ on the values R. For a

fixed input strategy f , the resulting semantics for a CH-IMP

program is obtained by combining the following semantic rule

with those in Fig. 2:

1When there are no secret values, P
(n)
XY

(x, y) = P
(n)
X

(x)P
(n)
Y

(y);
therefore, the leakage rate is zero.
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f(O) → ρ

(input V : R; C, o :: σ,S,O)
ρ(n)
−−−→

(C, ({V 7→ n} ∪ o) :: σ,S,O :: ni)

A program without an input strategy can be imagined as

a (partially-observable) Markov decision process. Combining

this with a particular input strategy (sometimes referred to

as a policy, or adversary in the context of Markov decision

processes) induces a discrete-time Markov chain equivalent

to the one defined by our semantics above. Our use of input

strategies is similar to that of O’Neill et al. [18], who define

a language with non-probabilistic user strategies and adapt

Volpano et al.’s [4] information leakage type system to support

these user strategies.

An attacker can observe and possibly control the inputs,

so they are considered to be observable values in our model;

therefore, the semantic rule above adds the input to the list

of observable values, with an i subscript to identify it as

an input. We also note that secret values defined after the

input occurs may depend on the value of the input. Here, a

leak does exist; this case may, for instance, correspond to a

program in which the user must choose a secret key, and the

attacker, via a particular sequence of inputs, forces the user to

choose a particular key, “revealing” its value to the attacker.

As discussed in Section I, this cannot be modelled as a formal

information-theoretic channel. Alvim et al. [17] present an

alternative model of interactive leakage that uses channels

with feedback to make it possible to model the system as

an information-theoretic channel.

This extension allows us to calculate the leakage from

a program with a particular input strategy. Two obvious

questions that arise are “does there exist an input strategy that

leads to an information leak?” and “what function maximises

the leakage?”. To answer the first question we show that,

when establishing whether a leak exists, it is sufficient to

execute a program with the strategy that chooses all inputs

uniformly:

Theorem 4: For any program, there exists an input strategy

that makes the program leak information if, and only if, the

program leaks information for an input strategy that chooses

inputs with a uniform distribution.

Proof Sketch: We note that the choice of an input strategy

may affect the probability distribution on the observable values

and inputs (PY ) and the probability distribution on the secret

values (PX ), but it does not affect the conditional probability

of the secret values given a particular sequence of inputs

and observable values (PX|Y ). Let P
f denote the probability

distributions produced by executing a program with input

strategy f . If the mutual information is zero for the uniform

input strategy fU , then P
fU
X and P

fU
Y are independent and

therefore ∀x, yP fU
X|Y (x|y) = P

fU
X (x). Since P

f

X|Y = P
f ′

X|Y

for all strategies f, f ′, then, if the mutual information is

zero for the uniform input strategy, ∀f, x, y P
f

X|Y (x|y) =

P
fU
X|Y (x|y) = P

fU
X (x) and therefore P

f
X is independent of

P
f
Y , and so the mutual information is zero.

A question that naturally arises from this is “what input

strategy maximises the leakage?”. However we show that, for

non-terminating programs, such an input strategy may not

exist:

Proposition 1: There exists a program such that, for any

input strategy f (that results in the random variables on secret

values Xf and on observable values and inputs Y f ), there

exists an input strategy f+ (with random variables on secret

values Xf+ and on observable values and inputs Y f+) such

that I(Xf+;Y f+) > I(Xf ;Y f ).

Proof: Consider the following program:

new result := 0; new i := 0; new sec := { 1 7→ 0.5, 2 7→ 0.5 };
secret sec;
while (i == 0) {

new z := { 1 7→ 0.5, 2 7→ 0.5 };
if (z == 2) { result := sec; }
input i : [ 0, 1 ];

}
observe result;

Each time the attacker inputs 0, the probability of the

secret being copied into the variable result is increased, but

never becomes 1. When the attacker inputs 1, the program

terminates and allows the attacker to observe the outcome

of the execution. In this example, any given strategy can be

improved by inputting more 0s before inputting 1, so there is

no input strategy for this program that leaks the most possible

information.

A possible extension of this work is to define the maximum

leakage as the supremium of the leakage caused by all possible

input strategies. We leave the investigation of this as future

work. O’Neill et al. [18] allow for user input strategies that

must be kept secret from the attacker; another extension of this

work would be to adapt their methods to add secret strategies

to our framework.

VI. IMPLEMENTATION

We have implemented the semantics of CH-IMP in an inter-

preter written in OCaml; our interpreter, along with a CH-IMP

implementation of the Dining Cryptographers protocol [28]

with an arbitrary number of participants, the motivating exam-

ples in Section II-B and other programs, can be found at [29].

An interface to the interpreter reads source code in CH-IMP

syntax from a file and parses and executes it, thereby construct-

ing the DTMC described in Section III-A. It then collapses

the DTMC to the initial and terminating states, and saves it in

a machine-readable form. The interface can then be used to

list the variables whose values were marked as secret during

the program’s execution, and calculate the information leakage

from the values of any given subset of them to the observable
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new m := 8192;
new a := 4801;
new c := 83;
new seed := [ 0 .. 8191 ];

new rand1 := (a * seed + c) mod m;
new card1 := rand1 mod 52;
observe card1;

new rand2 := (a * rand1 + c) mod m;
new card2 := (card1 + 1 + (rand2 mod 51)) mod 52;
secret card2;

Fig. 3. A CH-IMP implementation of a random playing card selector using
a linear congruential generator. “[ m .. n ]” is syntactic sugar for the uniform
distribution ranging over the integers (m, . . . , n).

values. The tool can calculate the mutual information, min-

entropy leakage and conditional entropy of the selected secret

values and observable values.

A. Example: A Pseudorandom Number Generator

Linear congruential generators (LCGs) are widely used

for generating pseudorandomness. An LCG L is defined by

Ln ≡ (a · Ln−1 + c) mod m, where m (the modulus), a (the

multiplier) and c (the increment) are parameters chosen by

the programmer, and L0 is the LCG’s seed value. The choice

of m, a and c controls the quality of the pseudorandomness

provided by the LCG: good values maximise the period of the

LCG and thus make the sequence of generated numbers less

predictable, while bad values shorten the period and make the

sequence more predictable.

Fig. 3 presents a CH-IMP implementation of a random

playing card selector. It answers the following question: if

playing cards are chosen randomly from a deck according to

an LCG with m = 8192, a = 4801 and c = 83 and dealt to

each player, how much information does a player learn about

the face value of the next card dealt to their opponent based

on the face value of the card they were just dealt? In this

case, the answer is ≈ 2.5 bits, which constitutes a significant

leak; these values of m, a and c therefore produce low-

quality pseudorandomness. By making the minor modification

a = 4805 the leakage is reduced to ≈ 0.03 bits, underlining the

importance of choosing appropriate parameters for an LCG.

B. Performance

Our OCaml implementation of CH-IMP’s semantics per-

forms well on programs of any length provided that the

corresponding DTMC remains relatively small: the playing

card selector example above, which has a state space of

3+213×7 = 57347, terminates in under a second on a modest

desktop computer. The time required to analyse a CH-IMP

program in this way can be exponential in the number of

secret values, observable values and variables in scope: cases

where the size of the DTMC explodes exponentially take much

longer to terminate, as commands must be evaluated in more

(and larger) states; nevertheless, our implementation provides a

working prototype of the semantics, gives us confidence in its

correctness, and allows for the precise computation of leakage

from programs with low to medium complexity.

VII. FROM COMPUTATION TO ESTIMATION OF LEAKAGE

Given these limitations of the OCaml implementation,

along with the difficulty of expressing complex algorithms in

CH-IMP syntax, it would be ideal to a) accurately measure

information leakage through means other than precise com-

putation, and b) measure leakage from programs written in

a widely-used, real-world programming language. We have

therefore developed a second tool, LeakWatch, that estimates

the information leakage from secret to observable values in

Java programs. Programmers identify the secret and observable

values in their programs by calling methods exposed by the

LeakWatch API. LeakWatch repeatedly executes a program’s

main method and collects the lists of secret and observable

values defined during each execution, then estimates the joint

probability distribution of the secret and observable values

(rather than computing it precisely, as in Section III-C). This

approximated distribution can then be used to estimate the

leakage from the secret values to the observable values, as

described in our earlier work on statistical approximation of

mutual information [2]. Other tools, e.g., Weka [30], contain

loosely similar functionality, but do not calculate confidence

intervals for their estimates or test for compatibility with zero

leakage. LeakWatch does, and is thus more reliably able to

identify statistically significant information leaks in source

code.

To demonstrate how LeakWatch can be used to find infor-

mation leaks in larger, more complex programs, we use it to

estimate the information leakage from several real-world Java

examples. The examples encompass a number of the models

in Fig. 1, rather than only the classic leakage model shown

in Fig. 1a. Table I shows how LeakWatch performs on these

examples, in terms of the approximate number of executions

required for the leakage estimation to “stabilise” (i.e., for

successive estimations to differ by fewer than 0.01 bits) to

the nearest 1,000 executions, and the total time required to

produce this estimation. For instance, LeakWatch estimates the

information leakage in ChimpLCG, a Java reimplementation

of the example in Fig. 3, to be ≈ 2.5 bits after 50,000

executions in 21 seconds, thus demonstrating the viability of

our statistical estimation technique.

The Java source code for all of these examples, along with

the tool itself, can be downloaded from [32]. Further examples

of the underlying estimation technique being applied to real-

world scenarios can be found in [2], [33].

A. Example: Visual Basic’s Rnd() Function

The API for the Visual Basic family of programming

languages exposes a Rnd() function that uses an LCG to

return pseudorandom numbers. Visual Basic uses the LCG pa-

rameters m = 224, a = 1140671485 and c = 12820163; these
values are too large to be used in the OCaml implementation

presented in Section VI, particularly that of m: since the value

of L0 must fall between 0 and m, a precise computation of

the leakage from such a program would require the generation

and traversal of a DTMC with 3 + 224 × 7 ≈ 117 million

states, which is impractical. In a Java reimplementation of
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Program name Description Observable(s) Secret(s) Executions Time (min)

ChimpLCG Reimplementation of CH-IMP playing card
selector (see Section VI-A)

Opponent’s card Our card 50,000 0.3

VisualBasicLCG Playing card selector example with emula-
tion of Visual Basic’s Rnd() function

Opponent’s card Our card 60,000 0.4

BloomFilter Leakage about Bloom filter set membership
based on its internal state

Bloom filter’s internal
bit array

1 integer 4,000 0.2

2 integers 20,000 0.9
3 integers 44,000 2.0
4 integers 88,000 4.2
5 integers 234,000 11.6
6 integers 513,000 24.4

SDM Information learnt about contents of Secure
Data Manager [31] databases

Size of encrypted
database

Number of accounts
in database

23,000 4.4

TABLE I
BENCHMARKING LEAKWATCH’S PERFORMANCE WHEN ESTIMATING LEAKAGE FROM SEVERAL JAVA PROGRAMS.

the example in Fig. 3 with Visual Basic’s LCG parameters,

LeakWatch reveals a leak of ≈ 0.93 bits from the face value

of the first chosen card to the face value of the second.

B. Example: Internal State of a Bloom Filter

A Bloom filter is a probabilistic data structure used to test

for set membership. The filter’s internal state is a bit array

of length l, with all bits initially set to 0; when elements are

“added” to the filter, some of these bits are set to 1 to indicate

that element’s membership of the set. The precise bits that are

set is determined by the output of a hash functionH that takes

the element’s value as input and and outputs the indeces of k

bits whose values should be set to 1. Membership of the set

can then be tested by checking whether the k bits of the filter

corresponding to the test value are set to 1.
Since Bloom filters are probabilistic, it is possible (and

indeed common, for small values of l) for collisions to occur in

the output of H . Thus, the filter could mistakenly identify an

element as a member of the set if all of its corresponding k bits

were set to 1 by other additions to the filter, resulting in a false

positive. The filter’s internal state therefore leaks a variable

amount of information about the values of the elements added

to it depending on the size of l and k and the number of

elements added.

In this example, n integers between 0 and 7 inclusive are

added to an existing Java implementation of a Bloom filter [34]

with parameters l = 16 and k = 2. LeakWatch demonstrates

that, as n increases, the average amount of information leaked

about each integer added to the filter decreases as more

collisions occur and the probability of encountering false

positives increases (see Table II).

C. Example: A Password Manager

Password management software is commonly used to se-

curely store databases of sensitive account details, such as

login names and passwords for web sites. To protect the

database, the password manager encrypts it with a user-

specified passphrase before writing it to a file on disk; to

retrieve the database at a later time, the user must load the

encrypted file and re-enter the passphrase for decryption. Care

Integers added Leakage (bits) Leakage per integer (bits)

1 2.80 2.8
2 5.04 2.5
3 6.20 2.1
4 6.64 1.6
5 6.84 1.4
6 6.86 1.1

TABLE II
THE AMOUNT OF INFORMATION LEAKED ABOUT THE INTEGERS ADDED

TO A BLOOM FILTER FROM THE FILTER’S INTERNAL STATE.

must be taken when designing password managers to ensure

that information about the database is not inadvertently leaked

when it is encrypted. Secure Data Manager [31], a free pass-

word manager written in Java, contains such a flaw: databases

are serialised and DES-encrypted under a user-specified key

but are not padded before being written to disk, so the size

of the encrypted file leaks information about the number

of accounts stored in the unencrypted database. LeakWatch

indicates that an attacker can guess the approximate number

of accounts in the database by observing the size of the

encrypted file; this can be verified by randomly inserting

between 1 and 32 accounts into an empty database, then

annotating the number of accounts as a secret value and the

size of the encrypted database (truncated to the nearest 100

bytes) as an observable value. The size of the leakage is

estimated to be 4.72 out of 5 bits. This is a security risk:

attackers will therefore target larger encrypted files known to

be written by Secure Data Manager since they are more likely

to contain larger numbers of account details. This example

demonstrates how software developers can use LeakWatch to

detect new information leaks in their own software as part of

their development flow.

VIII. CONCLUSION

We have presented a framework that can be used to measure

information leaks between arbitrary points in a program. To

do so, we have introduced CH-IMP, a language that allows

variables’ values to be annotated as either secret or observable
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by an attacker, and that provides a mechanism for quantify-

ing information leaks from secret to observable values. The

language is underlied by a coherent model of information

leakage for terminating programs, which we extended to non-

terminating programs by taking the limit of the leakage for

mutual information, and extended further to programs that

produce potentially infinite numbers of secret and observable

values. These methods could equally be applied to min-

entropy leakage, and we plan to do so in further work. We

also modelled attacker input strategies in our framework and

showed that, when we wish to discover if a leak exists for any

possible input strategy, it is sufficient to test a program with

a uniform input strategy that ignores the observable values.

We have built a prototype implementation of our semantics

in OCaml that can be used to measure information leakage

from programs of low to medium complexity; we extended

this to real-world programs by developing a tool, LeakWatch,

that uses statistical approximation to estimate leakage from

Java programs. In both cases, the secret and observable values

occur at arbitrary points throughout the program; therefore, our

methods of quantifying leakage were only achievable using the

leakage model presented in this paper.

ACKNOWLEDGEMENT

This work was supported by EPSRC Research Grant

EP/J009075/1. We also wish to thank Olga Maleva for her

helpful advice.

REFERENCES

[1] R. Gray, Entropy and Information Theory, 1st ed. Springer, 1991.
[2] K. Chatzikokolakis, T. Chothia, and A. Guha, “Statistical Measurement

of Information Leakage,” in The 16th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS

2010), ser. LNCS, 2010, pp. 390–404.
[3] http://www.cs.bham.ac.uk/research/projects/infotools/.
[4] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure

flow analysis,” Journal of Computer Security, vol. 4, no. 2–3, pp. 167–
187, Jan. 1996.

[5] D. Clark, S. Hunt, and P. Malacaria, “Quantified interference for a while
language,” Electron. Notes Theor. Comput. Sci., vol. 112, pp. 149–166,
2005.

[6] ——, “A static analysis for quantifying information flow in a simple
imperative language,” Journal of Computer Security, vol. 15, no. 3, pp.
321–371, 2007.
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