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Abstract. This paper presents a framework for calculating measures
of data integrity for programs in a small imperative language. We de-
velop a Markov chain semantics for our language which calculates Clark-
son and Schneider’s definitions of data contamination and suppression.
These definitions are based on conditional mutual information and en-
tropy; we present a result relating them to mutual information, which
can be calculated by a number of existing tools. We extend a quantitative
information flow tool (CH-IMP) to calculate these measures of integrity
and demonstrate this tool with examples based on error correcting codes,
the Dining Cryptographers protocol and the attempts by a number of
banks to influence the Libor rate.

1 Introduction

Data integrity is an important issue for programs, but this does not mean that
programs must guarantee that all good data is perfectly preserved, or that no
bad data can affect a program’s output in any way. It is often the case that a
good service can be provided with a small but acceptable loss in the the integrity
of data. Therefore, there is a need for a framework in which the level of integrity
a system provides can be accurately measured.

Qualitative integrity has been well-studied (see e.g. the work of Birgisson et
al. [3], who provide a unified framework for qualitative integrity policies), but
quantitative integrity measures have received far less attention. An exception
to this is the work of Clarkson and Schneider, which defines the data integrity
measures of “contamination” and “suppression” [8,9]. In this paper, we extend
these measures to a small imperative language, give this language a Markov
chain semantics, and show how these measures of integrity can be calculated for
programs with multiple trusted and untrusted inputs and outputs. We extend
an existing quantitative information flow (QIF) tool, CH-IMP [6], to use this
semantics to automatically calculate these measures.

Clarkson and Schneider’s definitions are based on conditional mutual infor-
mation and entropy. Existing QIF tools can calculate the mutual information
between a system’s secret values and observable outputs; we investigate whether
mutual information can be used to calculate conditional mutual information. We
find that for secrecy, in which the public inputs of a system must be unrelated to
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the secret inputs, conditional mutual information can be calculated using mutual
information (and therefore that existing QIF tools can calculate conditional mu-
tual information-based definitions of secrecy by simply appending a program’s
public inputs to its public outputs). However, for integrity, the trusted data is
considered to be public, and so the untrusted data sent to a system may depend
on it, so conditional mutual information must be calculated explicitly.

The semantics we present makes it possible to calculate the integrity between
multiple trusted and untrusted inputs and outputs. In doing so, we pay particular
attention to what data is recorded by the semantics, and thus the probability
distributions used to calculate the integrity measures. These decisions define the
attacker model: CH-IMP models an attacker that wishes to learn anything they
can about the secret values (including, e.g., the order in which they occur) and
can only observe certain outputs from the system. For integrity, we consider a
model in which we are only concerned that data is correctly preserved as it flows
between variables. Thus, because of the different attacker models, the calculation
of quantitative integrity is not the dual of the calculation of quantitative secrecy.

The contributions of this paper are:

– An extension of the CH-IMP semantics that can calculate the integrity mea-
sures defined by Clarkson and Schneider for multiple trusted and untrusted
inputs and outputs in a simple imperative language.

– Showing that, when trusted/public inputs are unrelated to untrusted/secure
inputs, measures based on conditional mutual information can be calculated
in terms of mutual information.

– A software tool — the first of its kind — that automatically quantifies mea-
sures of integrity, and example programs.

In Section 2 we review related work, including the integrity definitions of
Clarkson and Schneider and the CH-IMP framework. In Section 3 we show that
definitions based on conditional mutual information can be rewritten in terms of
mutual information, and can therefore be calculated more easily. In Section 4 we
extend the CH-IMP semantics to calculate quantitative integrity for imperative
programs. We implement this semantics and give some example programs in
Section 5. Finally, we conclude in Section 6.

Our tool and a number of example programs are available on our website [14].

2 Background

2.1 Information Theory

The entropy (see e.g. [10]) of a random variable X with a probability mass
function p is defined as

H(X) = −
∑
x∈X

p(x) log2 p(x)
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and is the average number of bits required to describe the result of the random
variable. This extends to joint distributions in the obvious way: H(X,Y ) =
−
∑

x∈X

∑
y∈Y p(x, y) log2 p(x, y).

The conditional entropy gives the amount of information required to describe
the value of a random variable X if the value of a second random variable Y is
known:

H(X|Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x)

p(x, y)

A natual extension of this is to define H(X|Y,Z) =
∑

x,y,z p(x, y, z) log2
p(x)

p(x,y,z) .

Mutual information is a measure of the information that one random variable
contains about another:

I(X;Y ) = H(X)−H(X|Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)

p(x)p(y)
. (1)

Finally, conditional mutual information tells us how much information a ran-
dom variable X contains about another random variable Y , given knowledge of
a third random variable Z:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z). (2)

2.2 Quantification of Information Leakage and CH-IMP

QIF systems measure how much information an attacker learns about the high-
level secret values in a system by observing low-level public values. Clark et
al. [7] propose a standard model in which a system has high and low inputs and
outputs, as depicted in Fig. 1. The information leakage in the system is then
defined using conditional mutual information:

Leakage = I(Hin;Lout|Lin)

i.e., the information the system leaks is the amount of information that an at-
tacker (who knows the public inputs to the system) can learn about the high-level
secret inputs to a system by observing the low-level public outputs.

More recently, a number of QIF tools have been developed that calculate the
leakage from programs of varying sizes and complexities (e.g., [6,2,12]). However
these tools calculate the simpler leakage measure of I(Hin;Lout); i.e., they do
not explicitly model the attacker’s knowledge of low inputs to the system.

Another popular measure of QIF is min-entropy leakage [13], which is given
by log2(Σl maxh p(h, l)) − log2(maxh p(h)). This measure describes a system’s
resistance to correct guesses of the secret value in a single attempt. In this
paper, we use definitions based on mutual information, but much of this work
also applies to min-entropy-based definitions of integrity.

In previous work [6], we generalised the standard model of information leak-
age to allow secrets and observables to occur at any point in a program, and
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Hin	  

Lin	  

Hout	  

Lout	  

Fig. 1: Information leakage model of a program

C ::= new V := ρ
| V := ρ
| if (B) { C } else { C }
| while (B) { C }
| C; C
| start
| end
| secret V
| observe V

Fig. 2: The syntax of CH-IMP

we developed a tool (CH-IMP) to automatically calculate the leakage from a
program.

The syntax of the CH-IMP language is given in Fig. 2. It is a simple imper-
ative language with loops, variable declaration and assignment, and scope. It is
a probabilistic language: the ρ in declaration and assignments is a probability
distribution on expressions. The novel features of this language are the secret and
observe commands,3 which are used to tag high-level secret data and low-level
observable data respectively. CH-IMP calculates how much information an at-
tacker learns about the values tagged with secret by inspecting the values tagged
with observe.

The semantics of CH-IMP are defined as a discrete-time Markov chain (DTMC)
with states of the form (C, σ,S,O), where C is the program to be executed, σ
is the current environment (mappings of variables to values), S are the secret
variable mappings observed so far, and O is a list of the observed values. In
order to support scope, an environment is a stack of sets of variable mappings,
and the start and end commands push and pop elements onto and from this stack
respectively.

3 For simplicity, we write secret and observe as commands in the language but, as they
have no effect on the state or control flow of a program, they may more accurately
be considered annotations.



Automatically Calculating Integrity 5

(new V := ρ; C, o :: σ,S,O)
ρ(n)−−−→ (C, ({V 7→ n} ∪ o) :: σ,S,O)

(secret V ; C, σ,S,O)
1−→ (C, σ,S :: (V 7→ 〚V 〛σ),O)

(observe V ; C, σ,S,O)
1−→ (C, σ,S,O :: 〚V 〛σ)

(V := ρ; C, σ,S,O)
ρ(n)−−−→ (C, σ ⊕ {V 7→ n},S,O)

σ(B)→ true

(if (B) { CT } else { CF }; C, σ,S,O)
1−→ (start; CT ; end; C, σ,S,O)

σ(B)→ false

(if (B) { CT } else { CF }; C, σ,S,O)
1−→ (start; CF ; end; C, σ,S,O)

σ(B)→ true

(while (B) { CW }; C, σ,S,O)
1−→ (start; CW ; end; while (B) { CW }; C, σ,S,O)

σ(B)→ false

(while (B) { CW }; C, σ,S,O)
1−→ (C, σ,S,O)

(start; C, σ,S,O)
1−→ (C, {} :: σ,S,O)

(end; C, o :: σ,S,O)
1−→ (C, σ,S,O)

Fig. 3: The semantic rules of CH-IMP.

The DTMC for a program C has the initial state (C, 〈〉, 〈〉, 〈〉) and a probabil-

ity transition matrix defined by the rules in Fig. 3. s
p−→ s′ denotes the existence

of a transition from state s to state s′ with probability p, and σ ⊕ {V 7→ n}
denotes the replacement of the mapping for V with V 7→ n in the narrowest
scope in σ already containing a mapping for V. The novel rules in the semantics
are the rules for secret and observe; these rules record the high and low values
that occur along a particular path of execution of the program.

A subtlety of the language is that it records variable mappings for secrets,
but only the values of the public observables. This reflects our attacker model,
in which the attacker wishes to learn any information about how the secret data
is processed — in particular, if an attacker learns which secret variables are used
(or in which order), but does not learn the values of those variables, then we



6 Tom Chothia, Chris Novakovic, and Rajiv Ranjan Singh

Program	  

Uin	  

Tin	  

Uout	  

Tout	  

Fig. 4: Integrity measurement model of a program

consider that they have learnt some information about the secrets; the variable
name must therefore be recorded in S. However, the attacker only sees the values
outputted by the program (not where or how these values were produced), so
only the values of the observables are recorded in O.

The final states of the DTMC of a terminating program give the probability
distribution p(S,O) from which the information leakage measure I(S;O) can be
calculated. The CH-IMP tool, source code and a range of examples are available
at [14].

2.3 Quantification of Integrity

Clarkson and Schneider’s work on the quantification of integrity [8,9] provides
three definitions of integrity, although they do not address how to compute these
definitions for programs. Their framework considers a program which has both
trusted and untrusted inputs and outputs, as depicted in Fig. 4. Their intuition
is that the untrusted data is bad data that an attacker may have added to the
system, whereas the trusted input is the good data added by an honest party.
A good system should minimise the effect that the untrusted inputs have on the
trusted outputs, while at the same time preserving as much of the information
from the trusted inputs as possible.

Clarkson and Schneider’s first definition is data contamination, which they
define as the amount of untrusted input data which can be learnt from the
trusted output:

Definition 1 (Contamination). The contamination in a system with untrusted
input Uin, trusted input Tin and trusted output Tout equals I(Uin;Tout|Tin).

We note that the measure I(Uin;Tout) would tell us how much information about
the untrusted inputs is carried over to the trusted outputs; however, using this
measure would produce misleading results in cases where the untrusted inputs
were based on the trusted inputs. For instance, if the untrusted input was always
an exact copy of the trusted input, and the trusted output was an exact copy of
the trusted input, we would not consider that contamination was occurring.

The second measure Clarkson and Schneider define is data suppression; their
intuition here is that the amount of data suppressed is the amount of data from
the trusted inputs that the receiver cannot learn from the trusted outputs.
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Definition 2 (Suppression). The suppression in a system with trusted input
Tin and trusted output Tout equals H(Tin|Tout).

Their third measure, program suppression, compares a program’s outputs to
a specification of a program, and is beyond the scope of this paper. We note
that none of these measures uses the untrusted outputs of a program, as these
should not be taken into account when determining a program’s integrity.

None of these measures make use of the untrusted output, which is included
in Fig. 4 for completeness. This indicates that, when considering the integrity of
a system, the value of any output of a system that we do not trust is irrelevant.

Clarkson and Schneider’s work only provides the definitions of quantification
of integrity; they do not address how the measures can be calculated for pro-
grams, and they only give single-line examples with single trusted and untrusted
values in which the probability distributions on the trusted and untrusted values
are clear, and so do not need to be calculated.

3 Using Mutual Information to Calculate Conditional
Mutual Information and Entropy

CH-IMP, along with several other QIF tools (e.g. [6,2,12]), can calculate the
mutual information between the input and output values of a program. In the
next section, we consider how the models of integrity and secrecy differ for
complex programs, but setting this aside it is natural to ask if these other tools
can be used to calculate integrity measures directly; i.e., given a tool to calculate
I(X;Y ), can we calculate contamination or suppression?

With regard to suppression (H(Tin|Tout)), we note that Equation 1 gives us:

H(Tin|Tout) = H(Tin)− I(Tin;Tout).

If the distribution of the trusted inputs is known, which we would expect, then
H(Tin) can be calculated directly; we could then tag the trusted inputs to a pro-
gram as secrets and the trusted outputs as observables, run the tool to calculate
I(Tin;Tout), and subtract this from H(Tin) to calculate suppression.

Contamination (I(Ui;To|Ti)) presents us with more of a problem. However,
we note that:

I(Ui;To|Ti) = H(Ui|Ti)−H(Ui|To, Ti) by Equation 2

= H(Ui) +H(Ui|Ti)−H(Ui|To, Ti)−H(Ui) + and - H(Ui)

= H(Ui)−H(Ui|To, Ti)− (H(Ui)−H(Ui|Ti)) rearrange terms

= I(Ui;To, Ti)− I(Ui;Ti) by Equation 1.

If the untrusted inputs Ui and the trusted inputs Ti are completely unrelated
then I(Ui;Ti) = 0, which in turn means that I(Uin, Tout|Tin) = I(Uin;Tin, Tout);
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C ::= new V := ρ
| V := ρ
| if (B) { C } else { C }
| while (B) { C }
| C; C
| start
| end
| untrustedin V
| trustedin V
| trustedout V

Fig. 5: The syntax of CH-IMP with integrity quantification (CH-IMP-IQ)

i.e., contamination in this case could be calculated by appending the trusted
inputs to the trusted outputs and calculating the mutual information between
this and the untrusted inputs. We state this as a theorem:

Theorem 1. Contamination = I(Ui;To|Ti) = I(Ui;Ti, To) + I(Ui;Ti), and, in
the case that the untrusted inputs are independent of the trusted inputs, contam-
ination = I(Ui;Ti, To).

However, the attacker’s untrusted inputs may depend on the trusted inputs.
There is no assumption of secrecy for the trusted values, and attacks on the
integrity of a system may rely on an attacker sending carefully-crafted untrusted
inputs based on the trusted inputs; e.g., the attacker might pick an input which,
when combined with a trusted input, causes an overflow. In this case, I(Ui;Ti, To)
overestimates contamination by an amount equal to the amount of information
about the untrusted inputs contained in the trusted inputs.

When calculating information leakage from a system, on the other hand, we
explicitly require that the attacker does not know the value of the secret inputs
(Highin), and therefore the attacker cannot pick low values (Lowin) based on
these; i.e., I(Highin;Lowin) = 0. So, for secrecy, the conditional form with low
inputs can be calculated directly by existing QIF tools:

Corollary 1. When calculating information leakage, for which we have I(Hin;
Lin) = 0, the standard measure of information leakage, I(Hin;Lout|Lin) is equal
to I(Hin;Lin, Lout).

Thus, existing QIF tools that calculate I(Highin;Lowout) can calculate the con-
ditional mutual information measurement of leakage by simply appending the
low-level inputs to the low-level outputs used to calculate leakage.

4 A Language for Integrity Checking

CH-IMP-IQ syntax. The syntax of CH-IMP with integrity quantification
(CH-IMP-IQ) is given in Fig. 5. V ranges over variable names, B ranges over
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Boolean expressions (i.e., evaluating to one of {true, false}), and ρ ranges over
probability distributions on arithmetic expressions: variables, integers, or the
result of evaluating two variables or integers with one of the standard arithmetic
operations {+, -, *, /,mod, xor}.

The key new commands are untrustedin, trustedin and trustedout. These are
used to label variables; we note that there is no label for untrusted outputs, as
these are not needed to calculate contamination or suppression. An input in CH-
IMP-IQ is not concrete; instead, it is selected from a probability distribution. For
instance, Clarkson and Schneider use a one-line example program in their paper
— oT := iT xor jU — in which oT is the trusted output, iT is the trusted input,
and jU is the untrusted input (iT and jU are chosen to be 0 or 1 uniformly).
This example is equivalent to the following CH-IMP-IQ program:

new iT := { 0 7→ 0.5, 1 7→ 0.5 };
trustedin iT ;
new jU := { 0 7→ 0.5, 1 7→ 0.5 };
untrustedin jU ;
new oT := iT xor jU ;
trustedout oT ;

The CH-IMP-IQ model. The CH-IMP-IQ semantics calculates the probabil-
ity distributions on the (un)trusted inputs and outputs. Furthermore, we would
like to be able to analyse programs with many (un)trusted inputs and outputs,
so we must consider which probability distributions should be calculated, and in
particular whether we should consider the values of the variables (as CH-IMP
does with observables) or the distribution on the mapping of variable names
to values (as CH-IMP does with secrets). We illustrate this with the following
example program (we use the shorthand trusted[in|out] new V := ρ to mean new

V := ρ; trusted[in|out] V ):

trustedin new in1 := { 0 7→ 0.5, 1 7→ 0.5 };
trustedin new in2 := { 0 7→ 0.5, 1 7→ 0.5 };
new coin := { 0 7→ 0.5, 1 7→ 0.5 };
if (coin = 1) {

trustedout new out1 = in1+1;
trustedout new out2 = in2+1;

} else {
trustedout new out2 = in2+1;
trustedout new out1 = in1+1;

}

This program has two trusted inputs and it adds 1 to each of them. The order
in which the inputs are incremented and marked as trusted outputs is decided by
a random coin flip. We argue that this program does not suppress the integrity
of its inputs: the order in which the outputs are declared should not matter,
so the suppression of this program should be 0. However, if we consider only
the values of the valuables marked as trusted outputs, we obtain the probability
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(trustedin V ; C, σ, Tin,Uin, Tout)
1−→ (C, σ, Tin ⊕ (V 7→ Tin(V ) :: 〚V 〛σ),Uin, Tout)

(untrustedin V ; C, σ, Tin,Uin, Tout)
1−→ (C, σ, Tin,Uin ⊕ (V 7→ Uin(V ) :: 〚V 〛σ), Tout)

(trustedout V ; C, σ, Tin,Uin, Tout)
1−→ (C, σ, Tin,Uin, Tout ⊕ (V 7→ Tout(V ) :: 〚V 〛σ))

Fig. 6: The integrity quantification semantics of CH-IMP-IQ

transition matrix on the left-hand side below, which implies a suppression value
greater than 0.

11 12 21 22
00 1 0 0 0
01 0 0.5 0.5 0
10 0 0.5 0.5 0
11 0 0 0 1

{out1=1, {out1=1, {out1=2, {out1=2,
out2=1} out2=2} out2=1} out2=2}

{in1=0,in2=0} 1 0 0 0
{in1=0,in2=1} 0 1 0 0
{in1=1,in2=0} 0 0 1 0
{in1=1,in2=1} 0 0 0 1

To capture the behaviour we want, we need to consider mappings from the
variables to the values taken by those variables as the elements of the probability
distribution, as in the matrix on the right-hand side. This means that the model
of integrity in CH-IMP-IQ is not exactly the dual of the model of secrecy in
CH-IMP, because the different systems use different attacker models. For secrecy,
we consider an attacker that only sees the output values of a program, and who
would like to learn any information about the secrets, including the order in
which they occur. For integrity, the observer should know which values relate to
which trusted variables, and is only interested in the integrity of these values.

CH-IMP-IQ semantics. The semantics of a CH-IMP-IQ program C is defined
as a DTMC (as with CH-IMP programs) with states describing the current path
of execution, annotated with the information needed to compute integrity. They
are of the form (C, σ, Tin,Uin, Tout), where C, σ are the commands to be executed
and the program state respectively, Tin is a set of mappings from variables to lists
of values that have been marked as trusted inputs (indicated with the trustedin

command), Tout is a set of mappings from variables to lists of values that have
been marked as trusted outputs (indicated with the trustedout command), and
Uin is a set of mappings from variable names to lists of values that have been
marked as untrusted inputs (indicated with the untrustedin command).

The semantic rules for the new commands are given in Fig. 6; they track
the values of the variables marked as containing trusted input, untrusted input
and trusted output by appending their current values to the lists Tin, Uin and
Tout respectively. The rules for the remaining CH-IMP commands are unchanged
from Fig. 3. The DTMC for a program C has the initial state (C, 〈〉, {}, {}, {}),
and a probability transition matrix defined by these rules.
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Calculating integrity. The final states of a terminating program4 give us the
probability distribution p(tin, uin, tout). To calculate suppression, we calculate
p(tin, tout) =

∑
u∈Uin

p(tin, u, tout) and p(tin) =
∑

t∈Tout
p(tin, t), then, using

the formula for conditional entropy:

H(Tin|Tout) =
∑

ti∈Tin

∑
to∈Tout

p(ti, to) log2

p(ti)

p(ti, to)
.

To calculate contamination, we calculate p(ui, ti) =
∑

t∈Tout
p(tin, ui, t) and

then use Bayes’ Theorem to expand the definition of conditional mutual infor-
mation to give:

I(Uin, Tout|Tin) =
∑

ti∈Tin

∑
to∈Tout

∑
ui∈Uin

p(ui, to, ti) log2

p(ti)p(ui, to, ti)

p(ui, ti)p(to, ti)
.

5 Implementation and Examples

We have implemented the CH-IMP-IQ semantics to calculate contamination
and suppression using approximately 1,000 lines of ML code (about two-thirds
of which are shared with the CH-IMP implementation). This implementation
calculates the measures precisely, modulo any rounding errors made by ML’s
floating point arithmetic.

The implementation builds the DTMC defined by the semantics, so its run-
time is proportional to the state space. While the exact run-time will depend on
the program being analysed, for a typical example the tool can analyse programs
with 212 states in seconds, and programs with 222 states overnight. The source
code and all of the examples from this section are available at [14].

Error correcting code. Our first example considers two simple error correction
strategies. We first consider a program that broadcasts a 2× 2 matrix in which
each cell is either 1 or 0 with a probability of 0.5. However we assume that, for
each cell, there is a probability that an error will occur and that the cell’s value
will be incremented by 1. In this case, the trusted inputs are the original cell
values, the untrusted inputs are the occurrences of the errors, and the trusted
outputs are the (possibly incremented) cell values.

The values of contamination and suppression for this program, with different
probabilities of error, are graphed in Fig. 7(a) (where the dashed line is suppres-
sion and the solid line is contamination). We see that both the contamination
and suppression values increase as the probability of an error increases, but as
an error becomes more certain (and therefore predictable), they both decrease.
This is because if we can be certain that an error will take place, we can treat a
2 as a 1, and a 1 as a 0, and the original information in the matrix is maintained.

4 We only consider terminating programs in this paper; however, simpler methods
than the ones we presented in [6] could be used to extend our definitions to non-
terminating programs.
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Fig. 7: Integrity measures for the cell errors

In this example, a 2 as the final value in one of the cells clearly indicates
that an error has occurred; we could therefore attempt to correct for this error
by replacing all 2s with 1s.

Running CH-IMP-IQ again, for a range of different probabilities of error, we
find the values of suppression and contamination graphed in Fig. 7(b). We find
that this error correction has decreased the contamination; i.e., the error value
has a smaller effect on the result. However, the suppression value has increased,
and indicates that now almost no useful data is received for high error rates. This
is because the output of the system now contains less information: previously
a cell value of 2 indicated that the original value was 1 and that an error had
occurred. This error correction could therefore be considered counterproductive.

Finally, we consider a more complex error correction method that calculates
the sum for each row or column, and then uses these sums to check for errors.
After the errors, we add code that tries to correct the cell values based on the
checksums. This code checks the post-error cell values and a correction is applied
if one of the cells does not match the sum for the row and column. Again, the
suppression and contamination measures for this code are graphed in Fig. 7(c)
(note the different scale for this graph). Errors now only go uncorrected if they
occur in pairs, so both suppression and contamination are much lower but still
non-zero. We see that the information integrity of the data actually increases
for high-error probabilities, again because errors become predictable and the
information is preserved.
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Fig. 8: Comparison of information leakage (via biased coins) and integrity loss
(via payer disobedience) in the Dining Cryptographers protocol

The Dining Cryptographers protocol [4] is a popular example in the in-
formation flow literature. The protocol is motivated by the story of three cryp-
tographers who, at the end of a meal, discover that the bill has been paid. They
suspect that it was either anonymously paid by one of them, or that it was
paid by the NSA. Not wanting to accept money from an organisation that may
be performing mass surveillance, they need a protocol that allows one of them
to communicate the fact that they paid, without revealing their identity. The
protocol runs as follows: each adjacent pair of cryptographers flips a coin that
only they see. The cryptographers therefore each see two coins, and they then
publicly announce whether the coins agree or disagree — except for the payer (if
any), who negates their answer. As the cryptographers are essentially computing
the XOR of the coins, if there is an odd number of “disagree” announcements
then one of the cryptographers paid, but if there is an even number of “disagree”
announcements then the NSA paid.

The secrecy of the payer’s identity in this protocol relies on the fairness
of the coins. A popular example for QIF tools is to show that secrecy of the
payer’s identity decreases as the coins become more biased; however, the effect
that biased coins have on the integrity of the protocol has not been studied.
A CH-IMP-IQ model of this protocol is available on our website [14]. In this
model, a variable nsapaid indicates whether the NSA is the payer; we tag this
variable as the trusted input. The trusted outputs are the announcements by the
cryptographers, and the untrusted inputs are the (possibly biased) coins. We can
also calculate secrecy for this program using CH-IMP. Previous analysis of this
protocol has shown that biased coins lead to the payer’s identity being leaked,
so we also consider how probabilistically disobeying the protocol may protect
the payer: we introduce a probabilistic variable obey , and if this equals zero the
payer will disobey the protocol and announce the true results of their coins.

We tested the secrecy and integrity of this system for a range of biased coins
and probabilities of the payer disobeying the protocol; the results are shown in
the surface plots in Fig. 8. The left-hand subfigure shows the suppression (a
suppression of 0 bits means that the payer’s identity is always correctly commu-
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nicated). We see that making the coins biased has no effect on this value; i.e.,
biased coins do not affect integrity. On the other hand, as the probability of the
payer disobeying the protocol increases, the amount of information suppressed
rapidly increases.

The right-hand subfigure shows the amount of information leaked about the
payer’s identity when the probability of disobeying the protocol is zero: a small
bias has little effect, but the leakage increases exponentially as the bias increases,
leading to a total loss of anonymity for completely biased coins. We also see that
disobeying the protocol increases the payer’s anonymity, but only at a linear rate.
This suggests that probabilistically disobeying the protocol is a poor defence for
the payer.

Banks Fixing Libor. Our final example is inspired by the attempts of certain
banks to influence the London Interbank Offered Rate (Libor) [1]. Libor is an
estimate of the rate at which London banks lend money to each other. This
measure is calculated by asking each bank to estimate the rate it would expect
and averaging the responses. The rate affects payments on mortgages, student
loans and other financial products; thus, any bank that can anticipate its value
can make a lot of money. Problems with Libor were first spotted in 2008 [11] and
it became evident in 2012 that some banks were constantly trying to fix Libor
by under- or over-reporting their estimates [1].

We model a number of different strategies that a corrupt bank could use to
fix Libor. Our model makes a number of simplifying assumptions: we assume
there is a true rate, modelled as a CH-IMP-IQ variable rate (the trusted input)
with an integer value selected uniformly between 1 and 4. We also assume that
there are four banks that will estimate this value either exactly, or ± 1, with
equal probability. Each of the four banks report their estimated rates, which can
then be used to calculate Libor (the trusted output).

Perhaps the biggest simplifying assumption we make is that there is only one
dishonest bank: one of the four banks will be randomly chosen as the corrupt
bank, and a random variable will be used to decide if the bank will try to push
the rate up or down; this variable is the untrusted input to the system. We write
four different CH-IMP-IQ programs to reflect four ways in which the bank might
try to affect the rate (all of which are available on our website):

1. No fixing: the bank does not make any changes, giving us a baseline to see
how well the process estimates the true rate.

2. Maximum fixing: the bank will either set its rate to 1 or 4 depending on
whether it is trying to increase or lower the rate.

3. ± 1: the bank will change its estimated rate by just 1 point within the range
1 to 4.

4. Average-based: the bank will follow the ± 1 strategy except when this would
make the banks reported rate more than 1 point away from the average of
the other bank’s rates, in which case the corrupt bank will report its true
rate.
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As well as calculating the integrity of the reported rate, we declare the iden-
tity of the corrupt bank as secret and the reported rates as observable, and
calculate how much information about the identity of the corrupt bank could be
computed from the rates. The results are shown in the following table:

No fixing Max. fixing ± 1 Average-based
Suppression 0.487 1.083 0.687 0.648

Contamination 0 0.789 0.222 0.171
Leakage 0 1.32 0.153 0.108

We see that the ”maximum fixing” strategy allows the bank to have a large
effect on the rate, but the high leakage value indicates that the bank’s actions will
be obvious. The “± 1” strategy has a smaller effect and a smaller leakage value,
indicating that it would be harder to spot than the “maximum fixing” strategy.
The “average-based” strategy avoids the cases where the corrupt bank’s estimate
is suspiciously high or low, so we see a much lower leakage, with only a slightly
smaller effect on the rate.

The strategy the dishonest banks actually employed was closest to the “±
1” strategy. In 2008, the Wall Street Journal spotted that banks were reporting
rates that, at times, seemed too high or too low [11], and started the investiga-
tion into the Libor-rigging scandal. Our analysis suggests that if the banks had
instead followed the “average-based” strategy it would have been much harder
for reporters to have spotted their actions, and only have had a minor decrease
in the affect they had over Libor.

6 Conclusion and Further Work

We have presented a framework that makes it possible to calculate quantitative
measures of integrity from imperative programs. We have extended Clarkson and
Schneider’s definitions of data contamination and suppression to a semantics for
a small imperative language, and we have implemented this language to produce
the only currently available tool that can be used to quantify integrity.

As further work, we are interested in developing Clarkson and Schneider’s
definition of integrity with respect to specifications for imperative programs. This
would involve a framework in which a user could write a specification program in
CH-IMP-IQ, along with a more complex implementation program. The integrity
of the implementation program would then be checked against the specification.
While we have used Shannon entropy measures in this paper, most of this work
would also apply to min-entropy-based measures, and as min-entropy leakage has
proven to be a good measure of information leakage [13], it is worth investigating
whether it also provides a good measure of integrity.

Due to their complexity and typical state space size, it would be difficult to
extend the semantics we present in this paper to real programming languages,
such as Java. However, in other work, we have investigated how statistical meth-
ods can be used to estimate information leakage measures from large, complex
Java programs [5]; we would also like to investigate whether similar techniques
can be used to estimate integrity in Java and other languages.
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