
An Offline Capture The Flag-Style Virtual Machine and an Assessment of its
Value for Cybersecurity Education

Tom Chothia
School of Computer Science

University of Birmingham, UK

Chris Novakovic∗

Department of Computing
Imperial College London, UK

Abstract
Online Capture The Flag (CTF) competitions are a pop-
ular means of engaging students with the world of cyber-
security. This paper reports on the use of a virtual ma-
chine (VM) framework that has been developed as part
of cybersecurity courses offered to both second-year un-
dergraduate and master’s degree students in the School
of Computer Science at the University of Birmingham;
the framework features CTF-style challenges that must
be solved in order to complete the courses’ formative as-
sessment. As well as acquiring flags from the framework,
students must also provide traditional written answers to
questions and sit an examination. We analyse how well
students’ performance on the CTF-style challenges cor-
relates with their achievement in the remaining formative
assessment and examination, thus providing evidence to
show whether CTFs are effective as an assessment tool
in academic cybersecurity courses.

1 Introduction

Live security exercises, such as Capture The Flag (CTF)
competitions, are a popular and fun means of engaging
with cybersecurity topics. The aim of these events is
typically for a team of participants either to defend a
host running vulnerable services while simultaneously
attacking other teams’ hosts running the same services
(attack/defence-style CTFs), or to solve standalone chal-
lenges from a range of categories, such as reverse-
engineering, forensics and web security, without the need
to directly attack other teams (Jeopardy-style CTFs). In
either case, the successful exploitation of a vulnerable
service or solving of a challenge reveals a flag to the vic-
tor, which scores points for the team when submitted to a
flag server operated by the CTF organisers; the submis-
sion of flags for more difficult challenges scores greater

∗This work was undertaken while the author was affiliated with the
School of Computer Science at the University of Birmingham.

numbers of points for the team, and the team that scores
the most points over the course of the competition is de-
clared the winner.

The pedagogical benefits of academic CTF competi-
tions — the largest and longest-running of which, iCTF1,
has been held annually since 2002 — have been widely
reported (e.g., [8, 6, 4]); amongst the most commonly-
reported are students’ increased motivation to learn about
cybersecurity, the enjoyment and satisfaction of com-
peting, and improved practical knowledge of theoretical
aspects of cybersecurity as a result of participating. It
would surely, therefore, be desirable to introduce CTFs
into the academic curriculum. However, there are several
barriers to doing so:

1. The infrastructure underpinning a CTF is typically
large and complex (e.g., [8, 4]); the computing
power (and, for attack/defence-style CTFs, network
bandwidth) required for the smooth operation of a
CTF is usually not available for teaching purposes.

2. CTFs require continuous supervision by their or-
ganisers to guarantee the smooth running of the
competition. Given that most CTFs run over a short
period of time (usually 12–48 hours), a pool of or-
ganisers working intensive shifts can ensure that the
CTF runs successfully (although this is not always
the case: our University’s CTF team [1] frequently
reports broken CTF challenges, which are then fixed
by dedicated CTF organisers). This would not
be viable in an academic teaching scenario where
courses run over a period of several months.

3. CTFs inevitably involve attacking vulnerable ser-
vices available on a network. We, and others [2],
have found University IT support staff hesitant to al-
low malicious traffic to pass over any network they
control. Additionally, there is a danger that stu-

1The UCSB iCTF: http://ictf.cs.ucsb.edu

http://ictf.cs.ucsb.edu


dents’ attack traffic could interfere with other stu-
dents or machines that are not part of the competi-
tion.

We have developed a framework that enables aca-
demic cybersecurity courses to feature Jeopardy-style
CTF challenges. The framework takes the form of a vir-
tual machine (VM) containing vulnerable services and
challenges devised by the course staff; they can be re-
vealed gradually to students as the relevant cyberse-
curity topics are taught in lectures, allowing individ-
ual continuously-assessed exercises to feature particular
challenges. Each student runs the VM locally and at-
tempts to solve each challenge inside the VM as they are
made available by the course staff. The successful com-
pletion of a challenge reveals a flag to the student, which
can be submitted to an automated system controlled by
the course staff for credit in the exercise; flags are unique
to a particular instance of the VM, allowing for the de-
tection of collusion between students.

This framework provides the benefits of CTFs to cy-
bersecurity students while avoiding the drawbacks listed
above: students run the virtualised framework on their
own hardware (e.g., their laptops), so course staff need
not invest time continually maintaining a centralised in-
frastructure to operate the CTF, and malicious traffic is
only routed inside a particular student’s virtual network,
eradicating the impact that an inexperienced student’s ac-
tions may have on the university network.

The students are not given the root password for the
VM by the course staff, but since they have control of the
virtual disk image they can gain root access and sidestep
some of the challenges in order to obtain flags. Since it is
impossible to prevent this from happening, in each exer-
cise we aimed to make obtaining a flag by such methods
more difficult than simply completing the exercise as in-
tended, e.g. by placing the flag in obfuscated, compiled
code.

Our VM-based framework has been used in three iter-
ations of our introductory cybersecurity courses, both at
graduate and undergraduate level. All of the continuous
assessment for these courses was based on our frame-
work; we therefore expected students to interact with
the framework for 3–4 hours per week over 11 weeks.
The introduction of VM-based CTF-style exercises was
popular with students, as indicated by a significant in-
crease in student satisfaction levels reported in the end-
of-course feedback questionnaires.

Students were required to submit not only flags, but
also written descriptions akin to traditional formative as-
sessment (e.g., detailed descriptions of the steps they
took to recover a flag, suggested fixes, discussion of
the security issues, etc). These written answers were
marked, and feedback provided. The submitted flags

were only used by markers as a sanity check for the
students’ written descriptions; however, we can com-
pare the overall marks the students achieved in their
continuously-assessed work with the number of flags
they managed to find, and therefore we can test whether
the ability to acquire flags in CTF-style challenges cor-
relates well with the marks students would achieve in
traditionally-marked cybersecurity exercises.

We found that for students obtaining low and medium
marks there was a very strong correlation between the
number of flags found and marks achieved. However,
for higher-attaining students the relationship between the
number of flags found and marks achieved was weaker.
After further analysis, it seems that the ability to ac-
quire flags in CTF-style challenges is an excellent indi-
cator of students’ basic knowledge and technical ability,
but does not accurately assess whether students have a
deeper understanding of the underlying cybersecurity is-
sues, which can be assessed with written answers. This
means that CTF-style challenges are an excellent com-
plement to the formative assessment of a taught cyberse-
curity course: they are better than no formative assess-
ment at all, but should not replace written assessment al-
together.

In the following section we present the VM-based
framework we have used in our courses, then in Sec-
tion 3 we compare students’ performance on the CTF-
style challenges with the marks they received on their
written assessment. We conclude in Section 4. The VM
and example exercise sheets are available from our web-
site2.

2 A VM-Based Framework for CTF-Style
Challenges

Our design goal was to create a VM-based framework in
which students could complete Jeopardy-style CTF chal-
lenges for credit, in a fun and accessible way. While the
use of VM-based exercises to support cybersecurity ed-
ucation is common (e.g., [2, 7]), our framework includes
exercises that assess the full range of cybersecurity topics
taught in the course and gives students flags for complet-
ing the exercises. Our other goals were that:

• Students should submit flags online, and their valid-
ity should be automatically and instantly verified.
To avoid duplicate submissions, flags for a single
challenge should be different for every student.

• Students should be able to set up the VM on their
own hardware and attempt to solve the challenges
offline. We did not want to require students to

2A CTF-Style VM Framework: http://www.cs.bham.ac.uk/

~tpc/SecEduVM/

2

http://www.cs.bham.ac.uk/~tpc/SecEduVM/
http://www.cs.bham.ac.uk/~tpc/SecEduVM/


have an Internet connection at all times and we
have also previously observed students encounter-
ing many problems with virtual networking setups;
we did not want to have to dedicate staff time to
providing support for these issues.

• The exercises should slowly introduce students to
Linux (with which many had no previous experi-
ence); beyond this, only cybersecurity knowledge
taught in the course should be needed to complete
the exercises. Cheung et al. [3] identify the lack of
knowledge as a major barrier to competing in CTFs,
so exercises should be made accessible to students.

• CTFs are inherently competitive, but exercises
should not be perceived as a “competition” between
students. Weaker students should not be publicly
perceived as “losing” in a taught course; instead,
each student should be able to work on exercises
at their own pace, and students submitting shortly
before a deadline should receive the same credit as
students completing exercises well ahead of it.

• Finding flags by sidestepping the challenges (e.g.,
by disassembling binaries, or by mounting the vir-
tual disk image and manually searching the file sys-
tem for flags) should be more time-consuming than
solving the exercise as intended.

2.1 The Framework
Our framework is based on a single VM that students
download at the start of the course and import into the
open-source VirtualBox virtualisation software3. This
VM runs a Linux operating system containing several
services, such as a web server, database server, and dae-
mons running purpose-built insecure protocols, as well
as many user accounts and complex, flawed access con-
trol configurations.

When the VM boots for the first time, a program runs
that generates the flags. These flags are written to par-
ticular locations (e.g., into the source code of a service
which is then compiled, or into a password-protected
MySQL database). The startup program sets appropri-
ate permissions on the generated files and binaries, and
deletes the source code it compiled before deleting itself.

The startup program generates a random VM identi-
fier, intended to be unique for each VM. To generate a
flag, this VM identifier is combined with exercise num-
ber and question number identifiers and is then encrypted
with a static 128-bit AES key chosen by the course staff;
the resulting ciphertext can be represented as a string of
32 hexademical characters, and these are the flags the
students are required to submit. Students submit these

3Oracle VM VirtualBox: https://www.virtualbox.org

flags by logging into the flag submission server — a web-
site operated by the course staff — using their Univer-
sity username and password and pasting the 32-character
string into the input box for the appropriate exercise and
question.

The flag submission server decrypts the ciphertext and
verifies that it is a valid flag for the given question by
checking the identifiers contained within the resulting
plaintext. The server records details of the flag submis-
sion for the markers and instantly informs the student
whether the submission was successful. Students are al-
lowed an unlimited number of flag submission attempts
for a particular question. To avoid the CTF-style chal-
lenges being perceived as competitions, students cannot
check whether other students have submitted flags for a
particular question.

An administrative page on the flag submission server
shows the course staff details of all flag submissions for
a given exercise and question, including the identity of
the student submitting the flag, when the submission was
made, and the identifier of the VM from which the flag
originated. Students sometimes complete exercises using
multiple copies of the VM (e.g., one on a laptop and one
on a desktop computer), so we occasionally detect multi-
ple VM identifiers for a particular student. However, stu-
dents are explicitly instructed not to share their VMs with
other students, so two students submitting flags with the
same VM identifier is a possible indicator of plagiarism.
The flag submission server does not reveal the results of
this check to the student, but instead alerts the course
staff of any irregularities on the administrative page; the
course staff then follow this up with the implicated stu-
dents individually (as we discuss in Section 3).

It would be possible for good students to download a
fresh copy of the VM and reverse-engineer the flag gen-
eration program, giving them the ability to generate their
own flags. However, we note that doing this would be
harder than completing any of the exercises, in particular
the existing reverse-engineering exercises. Additionally,
we require students to submit written work describing
how they solved each exercise, which would be hard to
do convincingly without solving the exercise as intended.
A larger concern is students finding a way to gain root
privileges on the VM and then finding information that
makes the exercises trivial. To counter this, we have de-
signed the exercises to, wherever possible, not rely on
the secrecy of particular files (e.g., in the web security
exercise, the website’s PHP code is not considered se-
cret, and students are given access to it along with the
exercise sheet).

3

https:// www.virtualbox.org


2.2 Course Mechanics

We used our framework in introductory cybersecurity
courses with a particular focus on technical skills and
understanding. One version of the course was run for
master’s degree students, who were expected to have a
good first degree in computer science but not necessarily
any previous knowledge of cybersecurity; another ver-
sion of the course was run for second-year undergrad-
uate students with basic programming and networking
skills. The latter version of the course used the same ba-
sic framework as the former, but with fewer and simpler
exercises.

Topics covered included cryptography, access control,
network and protocol security, web security, and — for
the master’s degree students — buffer overflows and
reverse-engineering of binaries. Both versions of the
course ran for 11 weeks with 2 hours of lectures and 2
hours of lab sessions per week, and students were given
2–3 weeks to complete each exercise. Exercises were
marked out of 100; grade boundaries were positioned at
intervals of 10 marks between 40 and 70, with a mark
above 70 representing high-quality work and a mark be-
low 40 representing failure.

The difficulty of the exercises was set based on experi-
ence gained from teaching previous courses and knowl-
edge of the other courses that the students had taken.
Generally, a third of the marks were awarded for a basic
solution (e.g., a working attack on a protocol), another
third of the marks were awarded for an optimal solution
(e.g., a protocol attack with no unnecessary steps), and
the final third were awarded for showing a clear under-
standing of the problem (e.g., a description of each line
of the protocol attack, making it clear what each part of
the message does, and why the attack works). Students
were informed in advance of how marking would take
place and were told what would be expected to receive
top marks. Complete marking guides for all of our ex-
ercises are available on request. Marks were not scaled,
but — as shown by the figures below — naturally ended
up distributed across all grades.

2.3 The Exercises

For all exercises, students were required to submit writ-
ten answers describing the steps they took to recover
flags from the VM, and — where appropriate — a de-
scription of what the vulnerabilities were and how they
worked, and an explanation of how they could be fixed.
Not all questions required the recovery of flags from the
VM, and flags were not used to unilaterally prove that
the student completed the exercise, but were instead in-
tended to give the marker some degree of assurance that
the students’ written answers were dependable. There

were minor variations to the questions in the exercises for
each course, both to make the second-year undergradu-
ate version of the course easier than the master’s degree
course, and to prevent students from simply reusing so-
lutions from a previous iteration of the course. Examples
of the full exercise sheets are available on our website.

Basic encryption. The first exercise familiarises stu-
dents with the VM, Linux (since many begin the course
with little or no experience of it), and performing cryp-
tographic operations in Java. The students are given the
passwords to two user accounts on the VM, alice and
bob. bob’s home directory contains incomplete Java
source code for an encryption application; the supplied
code contains methods for encrypting files using AES (in
either CTR or CCM mode) and RSA using a user-defined
key. The CTF-style challenges for this exercise involve
decrypting AES/RSA-encrypted files in bob’s home di-
rectory that each contain a flag; students are required to
write the corresponding decryption methods for the ap-
plication and use their compiled code to recover the flags
from the encrypted files.

Additionally, the startup program encrypts the mes-
sage “Pay Tom 1000 pounds” using AES in CTR mode
and writes it to a file in bob’s home directory; students
are not given the encryption key, but they must manually
edit the bits of the ciphertext (e.g., with a hex editor) so
that, when decrypted, the corresponding plaintext reads
“Pay Bob 9999 pounds”. Students are also required to
set up PGP for their email account, upload their public
key to a keyserver, ask their friends to sign their key, and
send a signed and encrypted email to a bot operated by
the course staff; the bot automatically checks that the stu-
dent has done this correctly and replies with feedback.

Access control. The VM contains a number of files
protected with flawed access controls. One flag is stored
in a file hidden in an obscure location in the file system
rather than given appropriately restrictive permissions;
others are stored in files with a variety of insecure per-
missions that allow the file to be read (e.g., via a chained
confused deputy attack against two insecure programs
with the setuid bit set). The challenges in this exercise
require students to bypass these weak access controls and
recover the flag contained within each file.

Protocol analysis. Students are given two key-
agreement protocols in the standard “Alice and Bob” se-
curity protocol notation, Java source code of servers im-
plementing these protocols, and pcap traces of clients
communicating with these servers using these protocols.
The protocols are vulnerable to a man-in-the-middle at-
tack and a replay attack respectively. Students must dis-

4



cover and describe the attacks, implement them, and run
them against the servers running on the VM; successful
exploitation of each server reveals a flag.

Web security. The VM runs a web server that hosts
what at first sight appears to be an online furniture store;
however, hidden inside this furniture store is a black mar-
ket website. Students must investigate this website, find
the black market interface and carry out a number of at-
tacks. An SQL injection attack allows them to view all
products stored in the backend MySQL database, includ-
ing the black market products and a flag. By analysing
the cookies set by the furniture store, they can discover
how the hidden website authenticates its users and gain
access to it. The site displays a flag from a protected file
that the students can submit to show that they accessed
the hidden website. A file upload attack allows them to
recover the MySQL server login details used by the black
market website; logging into the MySQL server using
these credentials reveals another database containing a
flag. A shell injection attack provides access to a shell
running as the www-data user, revealing a final flag in
a protected file in the file system. Non-flag questions in
this exercise additionally cover XSS and CSRF attacks.

Reverse-engineering. For this exercise, students must
reverse-engineer four programs: two written in heavily-
obfuscated Java and compiled into JDK bytecode, and
two written in C and compiled into native code. All
of these binaries behave as servers, and are listening on
ports on the VM. Students must reverse-engineer the first
three programs to recover a password expected to be en-
tered into the program which, when entered into the copy
of the program running as a server on the VM, causes
the program to output a flag. The final program is an
x86 binary for managing PGP keys, which also contains
a backdoor; this binary listens on a port on the VM and
runs as the root user. Students must find the backdoor
by examining the binary in the free edition of the IDA
disassembly tool4 and use it to gain access to a root shell
on the VM; a final flag is stored in a file in the /root di-
rectory. We also intended to place a buffer overflow vul-
nerability in one of the native-code binaries and require
students to exploit it to recover another flag; however,
we ultimately felt that buffer overflow exploits would be
beyond the scope of either course.

As an unofficial (and unassessed) sixth exercise, curi-
ous students were encouraged to discover how the VM
framework works. Using the skills they learned in the
course, the top 10% or so were able to deduce how the
flags must have been generated, and then re-downloaded

4IDA: Freeware Version: https://www.hex-rays.com/

products/ida/support/download_freeware.shtml

the VM and reverse-engineered the startup program.

2.4 Student Perception of the Courses
At the end of each course, students filled in detailed
end-of-course feedback questionnaires. Students stated
that they spent an average of 6 hours per week working
on these courses and rated them as difficult (on average
the fifth most difficult of the 35 courses offered by the
School); this is supported by comparing the final marks
that second-year undergraduates achieved on the Spring
2014 iteration of our course with the average final marks
for the other courses they took (Figure 1): the average
for our course is slightly lower than the overall average.
However, students also rated our courses as either the
most or second-most worthwhile course they took, rated
themselves as very happy with the course overall, and
rated each iteration of the course as one of the top courses
offered by the School.

40

60

80

100

40 60 80 100

Pe
rf

or
m

an
ce

on
Sp

ri
ng

20
14

co
ur

se

Average performance on other courses

Figure 1: Second-year undergraduate students’ final
marks in the Spring 2014 iteration of the course vs. their
average marks in other courses taken that year

3 Analysis of Flag Submissions and Marks

The submission of flags to a centralised course staff-
controlled flag submission server allowed us to track the
identities of students submitting flags, the unique iden-
tifiers of VMs deployed on students’ hardware, and the
frequency of flag submissions over time, across all itera-
tions of the courses. Using this data, we wish to measure

5

https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml


0

4

8

12

16

20

24

0 20 40 60 80 100

V
al

id
fla

gs
su

bm
itt

ed

Written continuous assessment mark

(a) Spring 2014

0

4

8

12

16

20

24

0 20 40 60 80 100

V
al

id
fla

gs
su

bm
itt

ed

Written continuous assessment mark

(b) Autumn 2014

0

4

8

12

16

20

24

0 20 40 60 80 100

V
al

id
fla

gs
su

bm
itt

ed

Written continuous assessment mark

(c) Spring 2015

Figure 2: Scatter plots of students’ written continuous assessment marks and the number of valid flags they submitted

how well a student’s ability to find flags in CTF-style
challenges corresponds with their performance in tradi-
tional written formative assessment, and also whether it
could be possible to replace manual marking of exer-
cises with automatic marking based solely on flag sub-
missions. The design of our framework allows us to per-
form these analyses.

Figure 2 shows scatter plots of each student’s writ-
ten continuous assessment mark and the number of valid
flags they submitted, across all three iterations of the
courses. Each point represents a single student; the num-
ber of valid flags submitted (on the y axis) is weighted
for difficulty.

The correlation between the number of valid flags sub-
mitted and written continuous assessment mark is high,
as shown by Table 1. A correlation coefficient greater
than 0.9 indicates a very strong relationship. However,
notice that this correlation is not uniform across the en-
tire mark range: if we divide the students into groups of
those who achieved the highest grade (i.e., those with a
mark of at least 70) and those who achieved lower grades,
we see that the correlation is much weaker amongst stu-
dents achieving the highest grade.

After reviewing students’ written submissions, we
found that all students who had submitted a valid flag for

Iteration of course

Spring 2014 Autumn 2014 Spring 2015

All marks 0.92 0.84 0.93
Marks ≥ 70 0.37 0.22 0.68
Marks < 70 0.91 0.82 0.90

Table 1: The correlation between the number of valid
flags submitted by a student and their written continuous
assessment mark for the course

a question received a good mark in their written submis-
sion for that question. The difference between students
receiving good and outstanding marks was mainly due to
higher-attaining students showing a deeper understand-
ing of the cybersecurity issues involved in the question.
For instance, the protocol analysis exercise requires the
student to suggest fixes for the protocols, as well as ex-
ploiting their implementation and recovering the flags;
only students who understood the protocols very well
were able to describe adequate fixes, whether or not they
had recovered the flags.

We found that the widest range of marks occurred with
the reverse-engineering exercise. The written submis-
sions of all students who submitted valid flags for this
exercise showed that they understood the basic concepts
of reverse-engineering and were competent with the dis-
assembly tools. The higher-attaining students, however,
showed a clear and complete understanding of the op-
eration of the binaries and the reverse-engineering pro-
cess, whereas the weaker students found vulnerabilities
by trial and error. Some of the best answers were pro-
vided by students who did not submit flags for all of
the other questions in the exercise, meaning that students
with fewer valid flag submissions sometimes scored bet-
ter overall.

The Spring 2015 iteration of the course was simpler
than the other iterations: it did not include the reverse-
engineering exercise, and questions did not require stu-
dents to suggest fixes for the vulnerabilities. For this it-
eration of the course we see a closer correlation between
marks awarded for students’ written submissions and the
number of valid flags they submitted, although the marks
of the higher-attaining students still show a lower corre-
lation than those that did not perform as well.

6



3.1 Discussion

40

60

80

100

40 60 80 100

Fl
ag

-o
nl

y
co

nt
in

uo
us

as
se

ss
m

en
tm

ar
k

Actual continuous assessment mark

Figure 3: Comparison of Spring 2014 second-year
undergraduate students’ actual continuous assessment
marks and the marks they would have been awarded had
they only been assessed on their valid flag submissions

Figure 3 shows a scatter plot of the marks that second-
year undergraduate students achieved for the Spring
2014 iteration of the course versus the marks they would
have been awarded had they only been assessed on their
valid flag submissions. The mean difference in mark is
1.5, and the standard deviation is 2.5. The grade bound-
aries are positioned at 10-mark intervals between 40 to
70, therefore most students would have received the same
overall grade; however, there are some exceptions, par-
ticularly around the highest grade boundary, with the
maximum difference being 9 marks. The examinations
for the other two iterations of the course have not yet
taken place.

In summary, our analysis shows a high correlation be-
tween a student’s ability to successfully complete CTF-
style challenges and their continuous assessment marks.
This suggests that flag acquisition is a useful assessment
technique for academic cybersecurity courses. However,
our data also suggests that assessing a student’s ability
to complete such challenges in isolation is not an appro-
priate method of assessing whether they possess a deep
understanding of cybersecurity topics.

Pedagogical value of written submissions and feed-
back. An issue that our analysis does not address is

the educational value to students of writing down de-
tailed answers to questions and receiving feedback on
the answers they give; this process requires students to
reflect on what they have done. Higgins et al. [5] pro-
vide evidence that students are driven by more than just
obtaining high marks, and benefit from feedback that
will help them engage with their subject in a deeper
way. Flag-only marking would also deprive students
of personalised feedback on their work: in every iter-
ation of these courses, either the lecturer or a teaching
associate would give detailed feedback on every writ-
ten submission, something that students indicated was
highly valued and a reason for their overall satisfaction
with the course (in the end-of-course feedback question-
naires, students rated the feedback they received on aver-
age as the third-best amongst the courses offered by the
School). However, after assisting students with the ini-
tial deployment of the VM, marking the written submis-
sions and providing this feedback was the most labour-
intensive aspect of the courses.

Plagiarism. Another (unfortunate) issue raised by
flag-only marking is the potential for plagiarism. Across
all three iterations of the course, we encountered three
cases where groups of students submitted flags contain-
ing identical or inconsistent VM identifiers (which are
intended to remain constant across the entire life of a sin-
gle instance of the VM). In the first case, a group of four
students submitted the same flag and very similar writ-
ten answers for a particular question. When interviewed,
they admitted copying from each other; they were given
a warning and were awarded 0 marks for the entire exer-
cise. In the second case, two students submitted the same
flag but different written answers; when interviewed, it
was found that they were both using low-spec tablet PCs
to attempt the challenges and were sharing a single in-
stance of the VM on an external hard drive. Both stu-
dents were given words of guidance. In the final case,
it emerged that, upon being the first to solve one of the
more difficult challenges, a student posted a screenshot
of his flag on Facebook to show off to his friends, from
where one of his “friends” duly transcribed the flag and
submitted it to the flag submission server before him.
The students were penalised for their lack of foresight
and lack of ethics respectively.

We also encountered a case in which two students sub-
mitted flags unique to their own instances of the VM but
plagiarised their written answers; both students were pe-
nalised; this case would not have been caught had flag-
only marking been used. Flag-only marking would also
massively increase the reward to students for plagiaris-
ing; questioned informally, some students said that there
was no benefit to plagiarising flags because of the ad-
ditional requirement to accompany them with written

7



answers. Overall, we saw much lower rates of plagia-
rism on our courses than on those with similar amounts
of continuous assessment contributing toward the final
course mark; we speculate that having to submit flags as
well as written answers was a deterrent for plagiarism, as
students could no longer simply copy and paste a writ-
ten answer but had to demonstrate understanding of the
written answer by acquiring a flag from their own VM
instance too.

4 Conclusion

We have shown that Jeopardy-style CTF challenges can
be adapted for an offline VM framework and used as part
of the formative assessment for an academic cybersecu-
rity course. Exercises developed as part of this frame-
work were considered difficult by students but were also
very popular. Automatic marking of flag submissions
complemented by manual marking of detailed written
answers provided students with instant feedback while
progressing through an exercise, provided them with
highly-valued detailed feedback after completing the as-
sessment, improved student satisfaction with the course,
and helped course staff to monitor and quickly mitigate
incidences of plagiarism.

By comparing the number of valid flags submitted by
students and the marks awarded for their written answers,
we have shown that the ability of students to acquire flags
in CTF-style challenges is highly correlated with their
overall marks, and that flag-based marking effectively
assesses a student’s basic skills and understanding of cy-
bersecurity topics. However, acquiring flags is much less
well-correlated with a student’s deeper understanding of
the underlying issues; flag-only marking may also lead to
more widespread plagiarism and fail to satisfy students’
expectations of feedback. Therefore, we conclude that
basing the formative assessment for an academic cyber-
security course on a combination of automatic flag-based
marking with manual marking of detailed written an-

swers provides a highly satisfactory student experience.
We are continuing to extend our framework with ad-

ditional exercises. Schreuders and Ardern [7] have de-
veloped a method of generating individual VMs for each
student, which may be an alternative to our startup pro-
gram. We will also continue our analysis of how well
acquiring flags in CTF-style challenges corresponds to
traditional educational assessment, with the aim of pro-
viding more long-term data.

References
[1] ANDREEA-INA RADU AND SAM L. THOMAS. Organising Mon-

keys or How to Run a Hacking Club. In Workshop on Cybersecu-
rity Training & Education (VIBRANT15) (2015).

[2] BURSZTEIN, E., GOURDIN, B., FABRY, C., BAU, J., RYDST-
EDT, G., BOJINOV, H., BONEH, D., AND MITCHELL, J. C. Web-
seclab Security Education Workbench. In 3rd Workshop on Cyber
Security Experimentation and Test (CSET ’10) (2010).

[3] CHEUNG, R. S., COHEN, J. P., LO, H. Z., ELIA, F., AND
CARRILLO-MARQUEZ, V. Effectiveness of Cybersecurity Com-
petitions. In Proceedings of the International Conference on Secu-
rity & Management (2012).

[4] DAVIS, A., LEEK, T., ZHIVICH, M., GWINNUP, K., AND
LEONARD, W. The Fun and Future of CTF. In 2014 USENIX
Summit on Gaming, Games, and Gamification in Security Educa-
tion (3GSE ’14) (2014).

[5] HIGGINS, R., HARTLEY, P., AND SKELTON, A. The Conscien-
tious Consumer: Reconsidering the role of assessment feedback in
student learning. In Studies in Higher Education (2002), vol. 27.

[6] MIRKOVIC, J., AND PETERSON, P. Class Capture-the-Flag Exer-
cises. In 2014 USENIX Summit on Gaming, Games, and Gamifi-
cation in Security Education (3GSE ’14) (2014).

[7] SCHREUDERS, Z. C. AND ARDERN, L. Generating randomised
virtualised scenarios for ethical hacking and computer security ed-
ucation: SecGen implementation and deployment. In Workshop on
Cybersecurity Training & Education (VIBRANT15) (2015).

[8] VIGNA, G., BORGOLTE, K., CORBETTA, J., DOUPÉ, A.,
FRATANTONIO, Y., INVERNIZZI, L., KIRAT, D., AND SHOSHI-
TAISHVILI, Y. Ten Years of iCTF: The Good, The Bad, and The
Ugly. In 2014 USENIX Summit on Gaming, Games, and Gamifi-
cation in Security Education (3GSE ’14) (2014).

8


	Introduction
	A VM-Based Framework for CTF-Style Challenges
	The Framework
	Course Mechanics
	The Exercises
	Student Perception of the Courses

	Analysis of Flag Submissions and Marks
	Discussion

	Conclusion

